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Abstract

It is well known that getting the estimate of integral points in right-angled simplices is
equivalent to getting the estimate of Dickman-De Bruijn function ¢ (x,y) which is the
number of positive integers < x and free of prime factors > y. Motivating from the Yau
Geometry Conjecture, the third author formulated the Number Theoretic Conjecture
which gives a sharp polynomial upper estimate that counts the number of positive
integral points in n-dimensional (n > 3) real right-angled simplices. In this paper, we
prove this Number Theoretic Conjecture for n = 5. As an application, we give a sharp
estimate of Dickman-De Bruijn function ¢ (x,y) for 5 <y < 13.

1 Introduction
Let A(aq,aq, ..., a,) be an n-dimensional simplex described by

T Tn,
S b+ < 2, 2y 2 0 (1.1)
aq (05} Qp

where a; > as > ... > a, > 1 are positive real numbers. Let P, = P(ay,as,...,a,) and
Q. = Q(ay,ay, ..., a,) be defined as the number of positive and nonnegative integral solutions
of (1.1) respectively. They are related by the following formula

Q(a,ag,...;a,) = P(a1(1 + a),az(1 + a), ..., a,(1 + a)), (1.2)
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where a = a—ll + é +..+ ai The estimate of integral points has many applications in number
theory, complex geometry, toric variety and tropical geometry.

One of the central topics in computational number theory is the estimate of ¥ (z,y), the
Dickman-De Bruijn function (see [4],[5],[6],[10]). Let S(x,y) be the set of positive integers
< z, composed only of prime factors < y. The Dickman-De Bruijn function ¢ (x,y) is the
cardinality of this set. It turns out that the computation of ¢(z, y) is equivalent to compute
the number of integral points in an n-dimensional tetrahedron A(ay,as,- - ,a,) with real
vertices (ay,0,--+,0),---,(0,---,0,a,). Let py < py < --- < p, denotes the primes up
to y. It is clear that pi'p2 .- plv < 2 if and only if I logp, + lylogpy + - + L, logp, <
logxz. Therefore, ¥(x,y) is precisely the number @, of (integer) lattice points inside the

n-dimensional tetrahedron (1.1) with a; = ll(;)gg;, 1<i<n.
The general problem of counting the number @),, has been a challenging problem for many
years. Tremendous researches have been putting to develop an exact formula when ay,--- ;a,

are positive integers (see [2],[1],][7],[14]). Mordell gave a formula for @3, expressed in terms
of three Dedekind sums, in the case that aj,as, and a3 are pairwise relatively prime [21];
Pommersheim extended the formula for Q3 to arbitrary a,as, and a3 using toric varieties
[22] and so forth. Meanwhile, the problem of counting the number of integral points in an
n-dimensional tetrahedron with real vertices is a classical subject which has attracted a lot of
famous mathematicians. Also from the view of estimating the Dickman-De Bruijn function,
a;, 1 <1 < n, are not always integers. Hardy and Littlewood wrote several papers that have
been applied on Diophantine approximation ([11], [12], [13]). A more general approximation
of @, was obtained by D. C. Spencer [23], [24] via complex function-theoretic methods.

According to Granville [9], an upper polynomial estimate of P, is a key topic in number
theory. Such an estimate could be applied to finding large gaps between primes, to Waring’s
problem, to primality testing and factoring algorithms, and to bounds for the least prime k-th
power residues and non-residues (mod n). Granville ([9]) obtained the following estimate

1
P, < —ajay...ay (1.3)
n!

This estimate of P, q,,..q,) given by (1.3) is interesting, but not strong enough to be use-
ful, particularly when many of the a;’s are small [9]. In geometry and singularity theory,
estimating P, for real right-angled simplices is related to the Durfee Conjecture [27]. Let
f:(C"0) — (C,0) be a germ of a complex analytic function with an isolated critical point
at the origin. Let V = {(z1,--+ ,2,) € C": f(21, -+, 2,) = 0}. The Milnor number of the
singularity (V,0) is defined as

= dlmC{Zl, e 7zn}/(fzp T a.fzn)
the geometric genus p, of (V,0) is defined as

py = dimH"*(M, Q" 1)

where M is a resolution of V and Q™! is the sheaf of germs of holomorphic n — 1 forms on
M. In 1978, Durfee [8] made the following conjecture:
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Durfee Conjecture. nlp, < p with equality only when p = 0.

If f(z1, -+ ,2,) is a weighted homogeneous polynomial of type (a1, aq,--- ,a,) with an
isolated singularity at the origin, Milnor and Orlik [20] proved that u = (a1 — 1)(az —
1)---(a, —1). On the other hand, Merle and Teissier [19] showed that p, = P,. Finding a
sharp estimate of P, will lead to a resolution of the Durfee Conjecture.

Starting from early 1990’s, the authors of [16], [26] and [28] tried to get sharp upper
estimates of P, where a; are positive real numbers. They were successful for n = 3, 4, and

5:
3P < f3 = ajasas — (aras + a1az + azas) + ay + aq

3
APy < f4 = arasazay — §(a1a2a3 + ayasay + ajazay + asazay)

11
+ E(alag + ajas + a2a3) — 2(@1 + as + ag)

5'P5 S f5 = 102030405 — 2(a1a2a3a4 + a1a2a3a5 + 1020405 + A1030405 + a2a3a4a5)

+ Z(alagag + a1020Q4 + a1a30a4 + (12&3@4)

— E(alag + ajas + ajay + asag + asay + asas) + 6(ay + ag + as + ay).

They then proposed a general conjecture:

Conjecture 1.1 (Granville-Lin-Yau (GLY) Conjecture) Let P, = number of element
of set

{(l’l,l'g, Tn) €LY T2+ < } Let n > 3,

(1) Sharp Estimate: if a; > ay > ... > a, > n — 1, then

:l:

—1 - —1-1

= (")

where s(n, k) is the Stirling number of the first kind defined by generating function:

A, (1.4)

n

x(m—l)---(x—n+1):ZS(n,k:)xk,

k=0
and A} is defined as
n - 1
Ap= (e > ),

. L , Qi Qiy - QA

=1 1<i1 <ig < <ip<n 172 tk
for k=1,2,--- ,n — 1. Equality holds if and only if a; = a; = ... = a,, = integer.
(2) Weak Estimate: If a1 > ay > ... > a, > 1

n

n!'P, < q, := H(ai —1). (1.5)

i=1



These estimates are all polynomials of a;. They are sharp because the equality holds true
if and only if all a; take the same integer. In ([15],[16],[26],[28]) the authors showed that
(1.5) holds for 3 < m < 5. The sharp estimate conjecture was first formulated in [17].
In private communication to the third author, Granville formulated this sharp estimated
conjecture independently after reading [15]. Again, the sharp GLY Conjecture has been
proven individually for n = 3,4,5 by [27], [28] and [16] respectively. It has also been proven
generally for n < 6 in [25]. However, for n = 7, a counterexample to the conjecture has been
given.

Counterexample to GLY Conjecture Take n = 7. Let a1 = ay = a3 = a4 = a5 = ag =
2000 and a7 = 6.09. Consider the following 7-dimensional tetrahedron: x; > 0,1 < < 7,
T To T3 Ty Ts5 Te Z7

<
2000 * 2000 * 2000 - 2000 * 2000 N 2000 * 6.09 —

P, has been computed to be 3.9656226290532420 x 10'6. Meanwhile, f; = 1.99840413 x 10%°
when a; = as = ... = ag = 2000, a7 = 6.09. Thus,

fr = 7'P;r = —2.69675 x 10'°.

1.

This implies that the sharp estimate of GLY Conjecture fails in the case n = 7.

The breakthrough in the subject is the following theorem by Yau and Zhang [29] which
states that the weak GLY conjecture holds for all n > 3.

Theorem 1.1 (Yau-Zhang [29]) Forn > 3, let a; > as > -+ > a, > 1 be real numbers. Let

P, be the number of positive integral solutions o % + z_; 4ot 2_2 <1, ie.
xXr €T Ty

Py=t{(z1, 0, ) €LY . =4+ 24 42 <1,

a Gz an

where Z is the set of positive integers. Then
n!P, <(ag —1)(ag —1)---(a, — 1)
and the equality holds if and only if a, = 1.

Theorem 1.1 above implies Durfee Conjecture for weighted homogeneous singularities.
However, the Yau-Zhang estimate is not sharp. It is not good enough to characterize the
homogeneous polynomial with isolated singularity. In order to do that, the third author
made the following conjecture in 1995.

Conjecture 1.2 (Yau Geometric Conjecture) Let f : (C"™ 0) — (C,0) be a germ of
a weighted homogeneous polynomial with isolated critical points at the origin. Let u, P,
and v be the Milnor number, geometric genus and multiplicity of the singularity V = {z :

f(2) = 0}. Then
p—h(v) > (n+1)P, (1.6)

where h(v) = (v — 1)"™' — p(v — 1)--- (v — n), and equality holds if and only if f is a
homogeneous polynomial.



The Yau Geometric Conjecture was answered affirmatively for n = 3,4,5 by [27], [16] and
[3] respectively.

In order to overcome the difficulty that the GLY sharp estimate conjecture is only true if
a, is larger than y(n), a positive integer depending on n, the third author proposes to prove
a new sharp polynomial estimate conjecture which is motivated from the Yau Geometric
Conjecture. The importance of this conjecture is that we only need a,, > 1 and hence the
conjecture will give a sharp upper estimate of the Dickman-De Bruijn function ¢ (x,y).

Conjecture 1.3 Assume that a1 > as > -+ > a, > 1, n > 3 and let P, = number of

element of set {(x1, @2, ...xn) € Zy; 22+ 2 + ..+ > < 1} If B, > 0, then

nlP, <(ag —1)(ag —1)---(a, — 1) = (an — 1)" + an(an — 1) -+ (a, — (n — 1)) (1.7)
and equality holds if and only if a1 = as = -+ = a,, = integer.

Obviously, there is an intimate relation between the Yau Geometric Conjecture (1.6) and
the number theoretic conjecture (1.7). Recall that if f : (C",0) — (C,0) is a weighted
homogeneous polynomial with isolated singularity at the origin, then the multiplicity v of
f at the origin is given by inf{n € Z, : n > inf{w,--- ,w,}}, where w; is the weight of
x;. Notice that in general, w; is only a rational number. In case the minimal weight is an
integer, then the Yau Geometric Conjecture (1.6) and the number theoretic conjecture (1.7)
are the same. In general, these two conjectures do not imply each other, although they are
intimately related.

The number theoretic conjecture (1.7) is much sharper than the weak GLY conjecture
(1.5). The estimate in (1.7) is optimal in the sense that the equality occurs precisely when
a; = az = -+ = a, = integer. Moreover, the sharp GLY conjecture (1.4) does not hold for
n = 7 as the counterexample shows. However, the number theoretic conjecture (1.7) does
hold for this example.

By the previous works of Xu and Yau [26], [28], it was shown that the number theoretic
conjecture is true for n = 3. n = 4 has been shown in our previous work [18]. The purpose
of this paper is to prove that the number theoretic conjecture is true for n = 5. The basic
strategy of proving n = 4 and n = 5 are the same. But the feasibility of the strategy has
been challenged, even if the dimension has only been increased by 1. As we will see in our
proof, the number of subcases has been increased from 4 (when n = 4) to 11 (when n = 5).
Showing subcases one by one will absolutely cause tremendous involved computations. And
it is tedious to our readers. In this paper, we, based on the intrinsic observation, simplify
11 subcases into 5 major classes (k = 1,2,3,4 and a5 > 5), and modify the former 4 classes
with delicate analysis of A;’s domain, where A; = a;(1 — %), i =1,2,3,4 to deal with the
subcases one by one. Furthermore, we give an explicit formula for the estimate of Dickman-
De Bruijn function ¢(z,y), when 5 < y < 13. Mathematica 4.0 is adopted to do some
involved computations. The following are our main theorems.



Theorem 1.2 (Number theoretic conjecture for n =5) Let a; > ay > a3 > a4 > a5 >
1 be real numbers. Let Ps be the number of positive integral solutions of o+ E+T+T+E <
1, 7e.

T Ty X3 T4 Ts
P5=ﬁ{(9€17$27$3,$4,9€5) €L —+ =4+ 2424 2< 1},
aq a9 as Qy as

where Z. is the set of positive integers. If Ps > 0, then

120P5 < (a3 — 1)(az — 1)(az — 1)(ag — 1)(as — 1) — (a5 — 1)°
+ as(as — 1)(as — 2)(as — 3)(as — 4)

and the equality holds if and only if a1 = as = a3 = aq4 = as=integer. This can also be
expressed as

4
120P5 <ajasasasas — (a1a2a3a4 + a1a204a5 + A2a304a5 + a1a30405) — Has
+ (a1a2a3 + araza4 + a1a2a5 + a1azas + aazas + aa4a;
3
+ asazay + asasas + asasas + agagas) + 25a;
2
+ (a1ag + a1az + a1a4 + aras + asas + asay + asas + asay + azas + agas) — 40az
— ((11 + as + asz + CL4> + 20&5. (18)

Theorem 1.3 (Estimate of Dickman-De Bruijn function) Let ¢ (z,y) be the Dickman-
De Bruyn function. We have the following upper estimate for 5 <y < 13:
(i) when 5 <y <7 and x > 5, we have

1 1

<= ] log 15)(1 log 10)(1 log 6
w(ﬂs,y)_G 10g210g310g5(0gx+ og 15)(log = + log 10)(log = + log 6)

1
- 10g—35[(log:c +log 6)*

— (log x 4 log 6 + log 5)(log x + log 6)(log = + log 6 — log 5)]};

(i) when 7 <y < 11 and = > 11, we have

1

<
Y 9) =5 S log 3 Tog 5 108 7

(log x + log 105)(log x + log 70)

- (log x + log 42)(log = + log 30)

1
T [(log z + log 30)*

— (log z + log 7 + log 30) (log = + log 30)

- (log x + log 30 — log 7)(log « + log 30 — 21log 7)]};



(7i) when 11 <y < 13 and = > 13, we have

1
log 2log 3 log 5log 7log 11

1
U(z,y) gm{ (log z + log 1155) (log « + log 770)(log = + log 462)

- (log x + log 330)(log = + log 210)

1
- +1og 210)°
o708 105 210)

— (log x 4+ log 11 + log 210) (log = + log 210)(log = + log 210 — log 11)

- (log x 4 log 210 — 21og 11)(log « + log 210 — 3log 11)]}.

2 Proof of Theorems

2.1 Proof of Theorem 1.2

Our strategy is to divide our proof of the main theorem into five cases:

To prove case (1), we only need to notice the main theorem in [16].
Theorem 2.4 ([16]) Let a; > as > a3 > a4 > a5 > 4 be real numbers and P5 be the number
of positive integral points satisfying
Ty Xy T3 Ty X
N NN NN
a1 az az a4 QAs
Then

120P5 <ajasazasas — 2(ajasa3a4 + a1a2a4a5 + aoa3a4a;5 + 41030405 + a1a2a305)
35

+ —(a1a2a3 + a1a2a4 + arazay + azasay)

4

50
— E(alag + ajaz + ajay + asaz + asay + agag) + 6(a; + ag + az + ayq), (2.9)
and the equality is attained if and only if a; = as = a3 = a4 = a5 = integer.

Case (1) is solved by showing that our sharp upper bound is larger than or equal to theirs,
and the equality holds if and only if a; = as = a3 = a4 = as.

7



Lemma 2.1 When a; > 5, R.H.S. of (1.8) > R.H.S. of (2.9).

Proof. Let A; = aa—;, 1 =1,2,3,4. From condition a; > as > a3 > a4 > as > 1, we have
that A; > 1,47 =1,2,3,4. Now, subtract R.H.S. of (1.8) by R.H.S. of (2.9), and substitute
a; by Ai, 1= 1,2,3,4:

Ay 2 R.H.S. of (1.8) — R.H.S. of (2.9)

31
= 1411421431446L;—)l + (A1A2A3 + A1A2A4 + A1A3A4 + 142143144)(@2—)l — Zag)
22
+ (ArAz + Ay + A1 Ay + ApAs + AsAs+ AsAu) (a3 + a)
+ (Ay + Ay + Az + Ay)(—a? — 5as) + (—bag + 25a3 — 40a2 + 20as) (2.10)

The idea is to show that for all as > 5, the minimum of Ay in A; > Ay > A3 > Ay > 1
occurs at Ay = Ay = A3 = Ay =1 and Ay |a4,=a,=45-4,-1= 0, for all a5 > 5. Note that A\,
is symmetric with respect with Ay, A5, A3 and Ajy.

[oaVANY
0A10A20A30A,

=a; >0,

for a5 > 1. It follows that fmfaaTA;aAg is an increasing function of Ay for a5 > 1, Ay > 1.

. B3/ _
Hence the minimum of 57575 7 occurs at Ag=1,

loAVAN] [ 31 31
_— = |Ayas + (a3 — —a3) ai(2a5 — =) >0,
0A10A0A3 | 4,4 4 Agm1 4
for as > 3L. It follows that Mfgﬁ > 0for Ay > 1, a5 > 3L. Note that 83 54, 1 symmetric
with respect to Az and A4. Thus, m > 0, for As > 1, a5 > 3. Moreover, we have
af?; is increasing with respect to Az and A4 for A3 > A, > 1 and a5 > g. The minimum
of ai 54 ocecurs at A=A, =1,
9?/\, { 31 22
= |AzAyas + (As + Ay)(az — —-a3) + (a3 + = a)
OA10A2 | p,— 4,1 4 3 As—Ay—1
29 22 29 22
= 3a; — ?ag + gag = a2(3a2 — 55 + 3) > 0,

for as > 5, since the largest solution to 3a2 — Z2as + 2 = 0 is around 4.26. It follows that
8321%1 > 0, for A3 > 1, Ay > 1 and a5 > 5 From the property that 8A1 is symmetric
with respect to A, A3 and Ay, we also get aA M >0, for Ay > 1, Ay > 1 and as > 5 and
% > 0, for Ay > 1, A3 > 1 and a5 > 5. Therefore, we have g—ﬁi is an increasing function

of Ay, A3 and A4 for Ay > 1, A3 > 1, Ay, > 1 and a5 > 5. Hence the minimum of % OCCUTS




atA2:A3:A4:1,

15 JAN 31
! — [A2A3A4a§ + (AAs + As Ay + AsAy)(al — ==a)
OAL | gy ny—ny—1 4
3 22 2 2
+(A2 —+ A3 —+ A4)(a5 + §G5) + (—(1/5 — 5@5)
As=A3=A4=1
81 79
= da; — Zag + 21aZ — bas = az(4a3 — Zag + 2las —5) > 0,

for as > 5, since 4a3 — &la2 + 21as — 5 > as(4a2 — %las + 20) = 4as((as — 55)* — 155;), and

let f(as) = (a5 — 55)* — 1595 > f(5) = £ > 0, for a5 > 5. It follows that g—ﬁll > 0, for
Ay >1,A3 > 1, Ay > 1 and a; > 5. By the property that A is symmetric with respect to

Aq, Ag, A3 and A4. We have the minimum of Ay occurs at Ay = Ay = A3 = Ay =1,

AN |A1:A2:A3:A4:1 =0,

for a5 > 5. Therefore, we have A1 > 0 when a1 > as > a3 > ay > a5 > 5 and Ay = 0 if and
only if a; = ay = ag = ay = as. The equality of (2.9) holds if and only if a; = ay = a3 =
as = as = integer, so does the equality of (1.8). O

For case (2) to (5), we adopt the similar strategy: basically, we partition the 5-dimension
tetrahedron into 4-dimension tetrahedra [25]. We have:

T T T T k
N |
ay 45) as Q4 as
T T2 T3 Ty
+ + +
Cll(l — ﬁ) (12(1 — ﬁ) (13(1 — ﬁ)

as as as

a41—ﬁ)§1’ (2.11)

as

for k = 1,---,|as], where [as] is the largest integer less than or equal to as. Let Py(k) be
the number of positive integral solutions of (2.11). Then

[as]

Py =" Py(k). (2.12)

k=1

According to Theorem 1.1 in [18], if P,;(k) > 0, then we have

SIPA() <5(an(1 — ) = Dlaa(l = ) = Dlas(1 = 2) = Dlaa(1 = ) =
~ (@ - 5 - 1)
ol = D)1 - )~ a1 - ) = D1 - ) -3



Suppose there exists some kg, 1 < ko < [a5], which is the largest integer such that Py(kg) > 0
and Py(k) = 0, for all ky < k < [as]. In fact, the integer ky does exist due to the condition
P5 > 0. By (2.12), we have

5'P5 =5! i P4(]€)
b, k k
<5 [(as(1 - a—5) = D)(ax(1 - a—5) — D)(as(1 - a—5) — D)(as(1 - a—5) - 1)
— (as(1 — a—5) - 1)
+ay(1 — a%)(cu(l — a%) — 1)(as(1 — a%) —2)(aq(1 — a%) —3)]. (2.13)

In order to prove (1.8), it is sufficient to show that R.H.S. of (1.8) > R.H.S. of (2.13). For
case (2) to (5), the equality in (1.8) can’t be attained by any chance. On the one hand,
P5 > 0 won’t be satisfied if a; = ay = a3 = a4 = a5 < 5. On the other hand, we could show
that R.H.S. of (1.8) is strictly larger than R.H.S. of (2.13) in these cases. Therefore, no such
a; > as > az > ay > as and as € (1,5) could make the equality in (1.8) happen.

Now, for case (5), there are two levels k = 1 and k = 2. It is easy to see that P,(2) = 0.
From the condition P5 > 0, we know that the level £k = 1 can’t have no positive integral
solution, i.e. Py(1) = Ps > 0. It is also implied that the smallest positive integral solution
(1,1,1,1,1) must be its solution, which gives that é + é + é + i <1- % 2, ac (0, %],
since as € (1,2]. And let A; = a;a, i = 1,2,3,4. Also notice that

A1 Z 4, A2 Z 3, Ag 2 2 and A4 Z 1, (214)

: 1 2 1 1 3 1 1 1 4 1 1 1 1
since - <1, - <4+ <L, o <p+r+p<land - <+ o+ +54 <L

Here, (2.13) can be rewritten as

5!Ps = 5!1P,(1) <5[(A; — 1)(Ay — 1) (A3 — 1)(Ay — 1) — (A4, — 1)*
+ As(Ag — 1)(As — 2)(As = 3)). (2.15)

To prove (1.8) in this case, it is sufficient to show that R.H.S. of (1.8) > R.H.S. of (2.15).
Lemma 2.2 When 1 <a; <2, R.H.S. of (1.8) > R.H.S. of (2.15).

Proof. Substitute a; = %, i=1,2,3,4 and a5 = ﬁ to R.H.S. of (1.8), subtract that by

10



R.H.S. of (2.15), and multiply (1 — «)?*, we get

1 3 3
AQ é141142143144(—3 ) + — —64 20 — 300&2 + 200[3 - 5064)
(0 (07 (0]
+ (A1 AsAs + A1 As Ay + AJ A3 Ay + A AsAy)
1 3
(_§+ +2 — 19a + 30a% — 200 + 50%)

(AlAQ + A Ag + A A4 + A2A3 + A2A4 + A3A4)(— -8 + 23 — 310& + 200& - 50& )

(Al +A2 +A3)( — 170é+27()é — 190& +5C¥ )
+ A3(10 — 40a 4 600 — 40a® + 10a*) + A3(—25 + 100a — 15002 4 100a® — 25a)
+ A4(14 — 57a + 87a” — 59a° + 15a*) + (—5a + 20a* — 20a?)

The idea is to show that for all o € (0, %}, the minimum of Ay in A; > 4, Ay > 3, A3 > 2
and Ay > 1 occurs at Ay =4, Ay =3, A3 =2 and Ay =1 and Dy |4,24,4y=3 45-2,4,-1> 0,
for all a € (0, 3].

72

84A2 1 3 3
3 2 - 2 — 2 2 3 4
0A10A20A30Ay o3 a2 + o 6 + 20 — 30a” + 20a° — ba

1
=—(1—0a)}(1 —5a®+5a%) >0,

Oé3

for a € (0,1). In fact, let f(a) =1 —5a% + 5a* And f'(a) = 2003 — 1502 = 502 (4a — 3),

which implies that f'(a) < 0, for a € (0,3], while f'(a) > 0, for a € (2,1). Thus,

min f(a) = f(3) = 2L > 0. Therefore, f(a) > 0, for @ € (0,1). It follows that 5292 is

(0 1 256 0A10A20A3
an increasing function of A4 for v € (0,1), A4 > 1. Hence the minimum of aAaaaTAaA oceurs
at A4 = ]_,

PNy 1 3 3
_— Ay(— — — +— — 6+ 20 — 30 20a” — 5
8A18A28A3A4 [4(a oz2+ + 20« a? + 2003 o)
1 3
+(—— 4+ = + 2 — 19« + 30a” — 200 + 5044)}
o o Ay=1
1 4
_E(Oé — 1) > 0,

for a € (0,1). It follows that % > 0 for Ay > 1, @ € (0,1). Note that ai gﬁx is

symmetric with respect to A3 and A4. Thus, M‘?ﬁ > 0, for A3 > 1, a € (0,1). Moreover,
we have 551 A4 6A is increasing with respect to Az and A, for A3 > Ay > 1 and a € (0,1). The

11



92N,

minimum of SA.040

occurs at A3 = Ay =1,

0%\ 1 3 3
= |A3Ai(— — = + = — 6+ 20a — 30a” + 200” — 5a*
94 04, - [ 3 4(a3 oz2+a + 20« a” + 20« a”)
1 3
+ (A3 + Ag)(—— + = + 2 — 19a + 300* — 200* + 5a*)
o’ «
1 f
+(= — 8+ 23a — 31a® + 200° — 5044)]
« Az=Ay4=1
1 5
= —5(—1 + )’ >0,
for « € (0,1). It follows that % > 0, for A3 > Ay > 1 and a € (0, 12). From the
property that gﬁf is symmetric with respect to Ay, A3 and A4, we also get frﬁza > (), for
Ay > Ay > 1and a € (0,1) and % > 0, for Ay > A3 > 1 and a € (0,1). Therefore, we
have g—ﬁf is an increasing function of As, A3 and Ay for Ay > A3 > Ay > 1 and a € (0,1).

Hence the minimum of 222 occurs at Ay = A3 =A, =1
0A1 )

0N,
oA,

1 3 3
AyA3Ay(— — = + — — 6+ 20a — 300” + 200” — 5a?)
« « «

Apx=A3z=A4=1 |:

1 3
+ (AQA?) + A2A4 + A3A4)(—? + a +2—19% + 300(2 — 200[3 + 50(4)

1
+ (Ag + Az + Ay) (= — 8+ 23a — 31a® + 20a° — 5at)
(%

+(4 = 17a + 270* — 190° + 5a*)] |A2=A3=A4=1

1
= $<—1 +Oé)6 > O,
for « € (0,1). It follows that g—ﬁf > 0, for Ap > A3 > Ay > 1 and « € (0,1). By the

property that A, is symmetric with respect to A;, Ay and A;. We also have 222 > 0, for

0As
Ap > Ay > Ay >1and §32 >0, for Ay > Ay > Ay > 1. Meanwhile,

D3Ny

—10(— 1
A7 =10(—1+a)" >0,

for v € (0,1). It follows that 8; ff is an increasing function of Ay, for Ay > 1 and a € (0, 1).
4
o

2A2
a7 occurs at Ay =1,

Thus, the minimum of

TN
21 = [6A4(10 — 40 + 60a® — 400 + 10a”)
8A4 Ay=1

+2(—25 + 100cc — 1500” + 100a® — 250)]

=10(=1+a)* >0,

=

12



for a € (0,1). It follows that 88AA22 >0, for Ay > 1 and a € (0,1). Thus, gﬁi is an increasing

function of Ay, for Ay > 1 and « € (0,1). Moreover, it’s an increasing function with respect
to Ay, Ay, Ag and Ay, for Ay > Ay > A3 > Ay > 1, a € (0, 1), since 922 i symmetric with

9A4
respect to Ay, Ay and Az. Take condition (2.14) into consideration, the minimum of gﬁQ

occurs at A1 =4, Ay =3, A3 =2, A, =1,

N 1 3 3
2 = | A1 A A3(— — — + = — 6+ 20a — 30a® + 20a° — 5a*)
o’ o o«

8144 A1=4,A2=3,A3=2,A4=1
+ (A1 Ay + A1 As + Ay Ay)

1 3
-(——2—|— = 42— 19a + 30a* — 200” + 5a*)
a

Y
(A1+A2—|—A3)(——8—|—23a—31a +20a® — 5at)

+ (14 — 57a + 87a* — 590 + 15a*)
+ 3A3(10 — 40 + 60a* — 40a” + 10a*)

2 3 4
+244(=25 +100a — 1500” +100a” = 25a")] |, oo

1
= —— (=14 a)’(24 — 260 + 90” — 410 + 400") > 0,
Oé

for € (0,2). In fact, let g(o) £ 24 — 26 + 90 — 41a® + 40a*. And ¢'(a) = —26 +

18a — 12302 + 1600 < —8a — 123a? + 160 = a(—8 — 123 + 160a?). Let h(a) = —8 —
123a 4 1600? = 160(a — 332) — 2222 (0,3), since h(0) = —8 and h(3) = —4,
ma:vae(oé)h(a) = —4 < 0. Thus, ¢'(a) < 0 for @ € (0, 7). It follows that g(c) is a decreasing
function in o € (0,3). Moreover, g(a) > g(3) = 22 > 0, for a € (0,3). It follows that
aAQ >0, for Ay >4, Ay >3, A3 > 2, Ay > 1 and « € (0, ) Therefore, /5 is an increasing
functlon of Ay, Ay, Az and Ay, for A; >4, Ay >3, A3 > 2, Ay > 1 and o € (0, %) Thus, the

minimum of A, occurs at Ay =4, Ay =3, A3 =2, A, =1,

1
Dol gyt dyes Agz dymt = —5(—24 + 1220 — 2570® + 289a” — 180a* + 45a° + 10a°) > 0,

for a € (0, 3]. Indeed, let f(a) = —24 +122a — 25702 + 2890 — 180a* + 450° 4 10a®. And
fOa) = 1734 — 43200 + 270002 4+ 12000° > 1734 — 43200+ 270002 — 2700(a— )% +6 > 0,
for « € (0,3]. Thus, f”(a) is increasing in « € (0,3] and f"(a) < f"(3) = —22 < 0.
So f'(a) is decreasing in a € (0,3] and f'(o) > f'(3) = L2 > 0. It implies that f( ) is
increasing in « € (0, 3] and f(o) < f(5) = —12 < 0. Therefore fla) <0, for a € (0, 3]. It
follows that Ay > 0 for Ay >4, Ay >3, A3 > 2, Ay > 1 and « € (0, %] ]

For case (4), there are three levels k = 1, k = 2 and k = 3. Also it is easy to see that
P,(3) = 0. The condition P5; > 0 guarantees that P;(1) > 0, but the positivity of P;(2) is
unknown. Therefore, we split this case into following two subcases:

(4a) Pyi(2) =0 (ie. ko =11n (2.13));

(4b)  Py(2) > 0 (i.e. ko =2 in (2.13)).

13



For subcase (4a), the proof is actually the same as case (5). As we know, in this case
P5 = P4(1) > 0, thus (1,1, 1,1, 1) is the smallest positive integral solution, i.e. % + é + % +

s S1l-22=aa€ (é, %] since a5 € (2,3]. The new range of « helps us to improve the
condition (2 14) to the following one:

A124,A2237A32A421a , (2.16)
—a
since 4; = a0 > aso = 2. With o € (3,3], it is easy to check that 1 < ﬁ < 2

Therefore, it is sufficient to show that Ay > 0, for Ay > 4, Ay > 3, A3 > 2, Ay > %=
and « € (3,2]. Notice that in the proof of Lemma 2.2 all the partial derivatives of A; are
positive for A} >4, Ay >3, A3 > 2, Ay > 1 and « € (0, 5) until the last step to compute
A2|A1:4,A2:3,A3:2,A4:1 > 0 only for a € (0, 1]. Thus, we need to take condition (2.16) instead
of the rough estimate (2.14) of A;, i =1,2,3,4.

1
Doalayms, apms agmragm e, = —(24 = 3% — 82a?% + 2230 — 152a* 4 20a°) > 0,

for v € (3,2]. In fact, let f(a) £ 24 — 39a — 82a? + 223a® — 152a + 20a°, then f”(a) =

—162+1338a— 182402 +400a° > —162+1338a— 16240? = —1624(a— 559.)2 4 18473 2 4(q),

and g(a) > g(3) =% > 0. So f’(«) > 0, for @ € (3,2]. Thus, f'(a) is increasing in

a € (3,2], ie flla) < f(3)=-% <0.So f/(a) <0for o€ (3, 2]. It follows that f(«) is
decreasing in « € (3, 3], and fla ) f(3) = 328 > 0. Therefore, f(a) >0, for a € (

275]

243
For subcase (4b), P,(2) > 0 which imphes that (1, 1,1, 1, 2) is the smallest positive integer
solution to the level k = 2. So we have _- L+ L+ L4 L o< 1- é £ 3, B € (0,3], since

as € (2,3]. Let A; = a;03, 1 = 1,2,3,4. Also notice that condition (2.14) still holds here.
(2.13) can be written as

51Ps =bI(Py(1) + F4(2))

s5[<A11;f —1)(4, j —1)(4 j - 1><A41;f 1)
_<A412+55 1)t +A41+ﬁB(A412+ﬁB —1)(,44%—2)(,441;55 _3)
+ (A = 1)(Ag = 1)(A3 = 1)(As = 1) = (As = 1)+ Ay(Ay — 1)(As = 2)(A4 = 3)].

(2.17)
It is sufficient to show that R.H.S. of (1.8) is strictly larger than R.H.S. of (2.17).
Lemma 2.3 When 2 < as; <3, R.H.S. of (1.8) > R.H.S. of (2.17).

Proof. Substitute a; = %, i=1,2,3,4 and a5 = ﬁ to R.H.S. of (1.8), subtract that by

14



R.H.S. of (2.17), and multiply (1 — 8)°38*, we get

Ay 2 A A ASA,

11 13 o 3 4 79,
(= Bt B I - D+
+ (A1 A Az + A1A2A4 + A1 A3Ay + Ay AsAy)
3 T, 13 5 27 , 5 181
(2 lp2_ 22 234 _99 297 06

(—gh+ -+ b 8+ 5

+ (A1 Ay + A1 As + AJ Ay + Ay Ag + Ay Ay + AsAy)
_12 33_174 83 5_1876 209 7_1158 9
(=78 + 8 =8+ B =+ B =8+ )

4
3 29 119 15
+ (At Ay + A3) (58° = 28" — 57+ 488° — =7 + 348" — —-5)

185 195 105 45
2B = 8+ 8 = 26

2 2 2
125 , 375 . 875, 1025 . 575 125
8 # e+

4 6
AR AR 4
1 4
+ A4(;B3 —12p* — %55 4 1483°% — %@7 +1043° — —559)
+ (—408° 4 403%)

195 405 85
28— 25+ )

228 1, 195
4 16 16

6
3 4B+

195 -, 105

45
1 BT+ 1 Bg—gﬂg)

25

5 5 5 35
A3(2p 252 _ 23 L 204 _ 5
+AUGB = 5F = 5B+ S BT =506 +
25 75
+ A=+ B - 8°)
4 4
2
The idea is to show that for all g € (0, %], the minimum of Agin A; >4, Ay > 3, A3 > 2

and Ay > 1 occurs at Ay =4, Ay =3, A3 =2 and Ay =1 and Ay |4,24.4,-3 45-2,4,-1> 0,
for all 8 € (0, 5.

0* N\
8A8A28A38A4
11 43 13 5 3.5 79, 223 5 195 o 195 . 405 o 85 g
16 B B+45 85+ 86 46+ 4ﬁ 166+166

1

16( 1+ B)*(11 4+ B —108% 4+ 108* — 654* +853°) > 0

for 5 € (0,2). In fact, 11 + 8 —108% + 103 — 654* + 855° > 11 — 98 — 553% 4 853° £

f(B), for B € (0,2). Then f'(8) = —9 — 1654% + 4254* = 425(6? — 2)2 — 1L, Thus,
) =

F'(B) < f/( 333 < 0, for 3 € (0,2), which implies f() is an decreasing fu(rjlsction, ie.
18) > (3

3
5
) =22 > 0, for 8 € (0,2). Tt follows that ﬁm is an increasing function of

15



A,y for B € (0, %), A4 > 1. Hence the minimum of Ol ocours at Ay =1,

0A10A20A3

A
0A0A04;|,

11 43 13 3 79 223 195 195 405 85
:A——— _2_3__4_5__6_7__8_9
[4(16 16B+4ﬁ+46 BﬁJr Sﬂ 46+ 46 165+166)

3.7, 13, 27, s 181 o 195 . 105 , 45

= 32 _ = Bt _99 B _ == R _ =
+(86+45 4ﬁ+46 ﬁ+46 46+4ﬁ 86)A421

__ %(4 + B (L+ B)(11 — BB + 5B + 55%) > 0,

for 5 € (0, g), since 11 — 58+ 582+ 543 > 8+ 542 + 532 > 0, for B € (0, %) It follows that

% > (0 for A4 > 1, 5 € (0, %) Note that % is symmetric with respect to Az and

83A3 3 82A3 DR :
Ay. Thus, Aaa > U for A3 > 1, g € (0,3). Moreover, we have 5104; IS Increasing

with respect to Az and Ay for A3 > A4 > 1 and 5 € (0, g) The minimum of 8?1213312 occurs
at Ag = A4 = 1,

[oaVAY
0A10A,

Az=As=1

11 43 13 3 79 223 195 195 405 85
I T 15 o 93 Dy 225 5 10 199 2o g 00
[34< Ppy Uy Sp Dgey 1y Do O

105 o 45

6 7T 9
16 8 8 4 B+ 4 p 7
181 195

3 7. 13 5 27, 5 6
+ (As + Ay)( 8ﬁ+46 46+45 22/3° + 4ﬁ 1
1 3 187 209

3 . 17, 83 115 25
Q2 et _ 4 - _ Y n8 =Y 29
=g+ 18 =8+ T - 1 4ﬁ+46)}

BT+

B+ ==p7

Az=As=1

= (1P B 4567 >0,

for 5 € (0,%). It follows that 6321—322 > 0, for A3 > Ay > 1 and 8 € (0,%2). From the
property that g—ﬁf is symmetric with respect to Ay, A3 and A4, we also get ailﬁig > 0, for
Ay > Ay >1and 8 € (0, g) and 83%24 > 0, for Ay > A3 > 1 and 8 € (0, g) Therefore, we

have g—ﬁf is an increasing function of As, A3 and Ay for Ay > A3 > Ay > 1 and 5 € (0, g)
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Hence the minimum of g—ﬁf occurs at Ay = A3 = A, =1,

0\
OA1 | 4y pgmny1
11 43 13 3 79 223 195 195 405 85
:AAA——— P2 | Ynp3 'Y 4 | EEY 05 VY n6 | VY o7 PYY a8 | PV 09
[2 i~ By o - D B g0 gr T B
+ (AgAs + A2 Ay + AzAy)
3 7., 13, 27, o181, 195 . 105 , 45
(=2 fp2_ 22 “igt 99 2006 270 0p8 2
(=gB+ B =5+ 8 Bt =B+ =5 - 2F6)
1 3 17 83 187 209 115 25
A A A__2_3__4_5__6_7__8_9
+(2+3+4)(45+45 45‘1‘45 45‘1‘45 454‘45)
2 11 1
HGE - 28t = B0 4 85 - 6 345 - )
2 2 2 2 Ag=A3=A4=1
1
= -1+ B)°(1 + B)(11 + 55%) > 0,
3). Tt follows thatg—ﬁf>0, for A22A32A421andﬁ€(0,§). By the
g—ﬁ;’>0,for

for 3 € (0,%).
property that Aj is symmetric with respect to A;, Ay and A3. We also have
Al > Ag > A4 > 1 and g—ﬁ: > 07 for A1 > A2 > A4 > 1. Meanwhile,

AN 5) ) ) 35 185 195 105 45
T4 0GPl g A R B e e = )
= S BR300+ 3895 >0,
2.

Phs is an increasing function of Ay, for Ay > 1 and 8 € (0,

for 8 € (0,2). It follows that o

. 2
Thus, the minimum of % occurs at Ay =1,
4

9%/\s
8A2A4:1
5 5 5 35 185 195 105 45
—6A (2B - 232 334 29p4 5 29906 17997 | V908 *Y 09
[64(4ﬁ 25 25+26 50/3+26 25+25 45)
25 75 125 375 875 1025 575 125
(2982, 1933 22054 21985 O1Y g6 VA9 g7 D19 g8 | 249 59
+(45+45 46+46 46+46 4ﬁ+4ﬁ)]A4:1

5)
—5 (=14 8)°B(3+45 = 5° +257) > 0,
for g € (0, g’), since 3448 — 2 +23% > 3+4B—§ = 3+%E > 0, for g € (0, %) It follows

923 g an increasing function of Ay, for

2
that %—ﬁ{’ > 0, for Ay > 1and 8 € (0,%). Thus, 332
Ay > 1 and g € (0, g) Moreover, it’s an increasing function with respect to Ay, Ay, A3 and
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Ay, for A > Ay > Ag > A4 > 1, B € (0, ) since 222 is symmetric with respect to A;, A,

9A4
and As. The minimum of =3 occurs at Ay = Ay =A3=A;, =1,
0/N\3
A4 | gy aymnym a1
= [A1 Ay A3
11 13 , 3 4 79, 223 . 195 . 195 . 405 o 85 4
(16 ﬁ ﬁ+46 85+86 46+4B 165—'_166)
+ (A Az +A As + Ay A3)
3 7 13 27 181 195 105 45
: (——5 + —52 - —53 +t —pt-226° + Tﬁﬁ - 757 + 758 - §59>
3 17 83 187 209 115 25
A A A__2 _pd TS N6 2V T oY a8 T 09
<1+2+3)<6+ 8T B - 8)
1 4
+ ( 23ﬁ —128* - 5 55+14866 36967+10458— 7559)
5 35 185 195 105 45
Az___z__3_4_ 5, 109 06 19 op LU g 29 g
340 = 587 =58+ 5B =808+ == — =BT+ =8 = )
25 75 125 375
M
875 1025 575 125
——ﬁﬁ —p" - 758 + 759)1
A1=Ap=Az=A4=1

= 116( 1+ B)°(11 + 548 + 6458% + 664> + 2853%) > 0,

for § € (0,%). It follows that g—ﬁi’ >0, for Ay > Ay > A3 > Ay > 1 and B € (0,%).
Therefore, A3 is an increasing function of Ay, Ay, A3 and Ay, for Ay > Ay > A3 > Ay > 1
and 8 € (0, %) Thus, the minimum of Az occurs at Ay = Ay = A3 = A4 = 1 and take
condition (2.14) into consideration,

A3|,41:4,,42:3,Ag:2,,44:1 > A3|A1:A2:,43:A4:1

- 116( 1+ 8)(1+ B)(—1+38)(—11+ 148 + 318% — 1728° 4+ 1155 — 3228° + 253%) > 0,
for 8 € (0, 3], since —11 + 148 + 3182 — 1723% + 11544 — 322/3° + 2545 < —11+ & + 3 —
17283 + 11553 3223° + 2p° = =2 — P3P — LB <0, for § € (0,5]. It follows that
A3>0fOTA124,A223A322 A4Zl&ﬂdﬁ€(07%]. ]

For case (3), there are four levels k = 1, k = 2, k = 3 and k = 4. It’s easy to see that
Py(4) = 0. From the condition P5 > 0, we know that P,;(1) > 0, but the positivity of Py(2)
and Py(3) are unknown. Therefore, we split this case into three subcases:

(3a) Pi(2) = Pi(3) =0 (ie. ko =11n (2.13));

(3b)  Pu(2) >0, Py(3) =0 (i.e. ko =2 in (2.13));

(3c)  Py(2) >0, Py(3) >0 (i.e. kg =3in (2.13)).
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For subcase (3a), the proof is nearly the same as case (5). As we know, in this case
P5 = P4(1) > 0, thus (1,1, 1,1, 1) is the smallest positive integral solution, i.e. % + é + % +

s S1l-22=aa€ (%, %] since a5 € (3,4]. The new range of « helps us to improve the
condition (2 14) to the following one:

Ay 24, Ay 23, A3 > Ay 2 1 ; (2.18)
—a
since A; = a;o0 > asa = 2=, With a € (3,2], it is easy to check that 2 < ;% < 3.

Therefore, it is sufficient to show that A, > 0, for Ay > 4, Ay > 3, A3 > Ay > %=
and a € (3, Z] Notice that in the proof of Lemma 2.2 all the partial derivatives of A; are
positive for A; >4, Ay >3, A3 > 2, Ay > 1 and «a € (0, 5) until the last step to compute
Dol p,—4 Ay=3.A5—2.4,—1 > 0 only for a € (0, %] Thus, we need to take condition (2.18) instead
of the rough estimate (2.14) of A;, 1 =1,2,3,4.

DNl g ayms pg—nye o = =25+ 176 — 4110’ + 4150° — 1600 > 0,

for a € (2,3]. In fact, let f(a) & —25 + 176a — 41102 + 415a% — 160a*, then f”(«

50 )
—822 + 2490 — 192002 = —1920(a — 33)2 181 - for a € (2,3]. Thus, f'(a) is
decreasing in «a, and f'(a) < f’( ) = 224 < 0. Therefore, f(«) is decreasing in « € (% %]

and f(o) > f(3) =4 >0, fora € (§,§].

For case (3b), the proof is nearly the same as subcase (2b). As we know, in this case
Py = Py(1) + P4(2) > 0 thus (1,1,1,1,2) is the smallest positive integral solution for the
level k = 2, i.e. + + oot 14 <1-2X %23 p5¢ (%,%], since as € (3,4]. Also, let
Ai=aB,1=1,2, 3 4. The neW range of helps us to improve the condition (2.14) to the
following one:

20

Ay >4, Ay >3, A3>2A4>—B (2.19)
since A, = a;8 > asf8 = 2’85. With g € (%,%], it is easy to check that 1 < % < 2
8

Therefore, it is sufficient to show that A3 > 0, for Ay > 4, Ay > 3, A3 > 2, Ay > 12—_6
and 3 € (3,3]. Notice that in the proof of Lemma 2.3 all the partial derivatives of A; are
positive for A} >4, Ay >3, A3 >2, Ay, > 1and 5 € (0 ,%) until the last step to compute
Nl g, —gay—s.ay—0.4,—1 > 0 only for 3 € (0, 3]. Thus, we need to take condition (2.19) instead
of the rough estimate (2.14) of A;, 1 =1,2,3,4.

2 |A1:4,A2:3,A3:2,A4:%

=B(—1+ B)(—24 4 568 — 26/3% — 653% + 222* — 2563° + 283° + 14587) > 0,

for a € (3, 3. Indeed, —24+563 — 264 — 654 4222* —2563° +283°+ 14537 < —244-56( —
2632 —653°+2223 — 828335 < —24 4+ 56— 2632 —653% + 31 5t < —244563—2653%+ 2L 3% <
—244565— 15 £ £(3), and £(8) — —%1 (9— 8447+ ML Thus, £(8) < f(1) = —1% <0,
for B € (3, 2]
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For subcase (3c), P4(3) > 0 which implies that (1,1, 1,1, 3) is the smallest positive integer
solution to the level £ = 3. So we have a—ll + é + % + i <1- % 2 ~, v € (0, }l], since

as € (3,4]. Let A; = a;7y, i = 1,2,3,4. Also notice that condition (2.14) still holds here.
(2.13) can be written as

51P; =51(Py(1) + Py(2) + Pi(3))

S5l = D(Aa T = (A~ (AT~ )
—@haLV—U4+m2;7mf;j—4fo;7—2m@%;7—@
(A = D = DA = DA~ 1)
_<A41—z|))—72’y —1)4+A 1—;}/2’}/(1441—;}/27 —1)(1441—‘[_27 _2)(1441—;)—727 _3)
+ (A= 1)(As — 1) (A5 — 1)(As — 1) — (A — 1) + Ay(Ay — 1)(As — 2)(Ay —(23)2]0)

It is sufficient to show that R.H.S. of (1.8) is strictly larger than R.H.S. of (2.20).
Lemma 2.4 When 3 <as <4, R.H.S. of (1.8) > R.H.S. of (2.20).

Proof. Substitute a; = %, 1=1,2,3,4 and a5 = 1%/ to R.H.S. of (1.8), subtract that by

R.H.S. of (2.20), and multiply (1 —7)%y*, we get

Ny A A A3A,
77 038 62, 104 , 53, 224 . 1300 4 460 , 250 490

(LD EF U _ _/vr T 9
=9 TV~ TV g T g )
+ (A1 A A + A1 A Ay + A1 AsAy + Ay A3 Ay)
1 14 2 142 160 20
L 22__3 _4_235 -e 6 TP T 308__9
(37+ (et et v 57 307 37)

+ (A1 A + A1 As + A1 Ay + AsAs + As Ay + AsAy)
7., 22, 16 , 182 . 443 . 178 . 310 o 70
(97+—97 ALt At M st 97-+97)
+ (A + Ay + A3)(3y® — 89* — 89° + 5295 — 7377 + 444® — 107Y)
10 20 40 290 320 40
+ AU FY — 107+ 290+ 91 = 5097 + == = =T 607" - =)

125 , 425 5 200 , 1000 5 2125 o 875 . 1550 4 350

A2(_222 2 20 s 2 4 TUPR 5 2749 60, P00 TUY9P 8 OO 9
TG Y g e Y T )
+ As(137” = 387" — 87° + 1529° — 22377 4 134+° — 307")

+ (=307" — 1059° — 457° 4 12077 + 607°)

The idea is to show that for all v € (0, 1], the minimum of Ay in A; >4, Ay >3, A3 > 2
and A4 > 1 occurs at Al = 4, A2 = 3, Ag = 2 and A4 =1 and A4 |A1:4,A2:3,A3=2,A4:1> 0,
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for all vy € (0, 1].

N, 1

= _—(~1 (77 — 34y — 409* + 40® — 2907* 4 4907°) > 0
IA0A0A0A, s1 T 7oA+l 7" +49077) > 0,

for v € (0, 2), since 77 — 34y — 407% +40* — 2907* +490~° > 77— 34 x 2 —40 x () —290 x

(3)* + 4073 + 4907° = ST 4 404® + 4907° > 0. It follows that #ﬁ“m:ﬁ is an increasing

function of A, for v € (0, %), A, > 1. Hence the minimum of % occurs at Ay =1,

PNy
0A10A50A3

Ayg=1

- A(77_38 L6255 1045 53, 224 5 1300 ; 460 ; 250 490
TR T 9T T g Tgr T T Ty T T g T T g T T g
1

14 , 26 142 5 160 20
- 22__3 _4_235 I Y ¢ 308__9
Hegr+ 2 -+ 5 V5 5 30 = )

Ay=1

1
= = g ("1 (77 + 167 + 307" + 707° + 507*) > 0,

for v € (0,2). Tt follows that 57224 > 0 for Ay > 1, v € (0,2). Note that 555+

is symmetric with respect to Az and A4. Thus, % > 0, for A3 > 1, g € (0,%).

2 - . .
Moreover, we have ﬁ is increasing with respect to As and Ay for A3 > Ay > 1 and

v € (0, 2). The minimum of % occurs at Az = Ay =1,

02N,
0A10A,

= [A3A4(

Az=Au=1
77T 38 62, 104 , 53 , 224 . 1300 , 460 . 250 490
sl oty T g Y Ty Y Y g )
1 14 2% 142 160 20
+(As + Ag)(=37 + 29 — §’73 + 374 — 237" + 7’76 - 777 +307° — 379)
7, 2, 16, 182 . 443 , 178 . 310 4 70 ,
+(97+97 57 T oV T3 97+97)

Az=As=1

1
:g(—l +7)%(77 4+ 667y + 60+* 4 407*) > 0,

for v € (O,%). It follows that % > 0, for A3 > A4 > 1 and v € (0, %2) From the
property that g—ﬁf is symmetric with respect to A,, A3 and A4, we also get frgjg > 0, for

Ay > Ay > 1 and v € (0, %) and 832’1?24 > 0, for Ay > A3 > 1 and ~ € (0, %) Therefore, we

have g—ﬁf is an increasing function of As, A3 and Ay for Ay > A3 > A, > 1 and v € (0, %)
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N4 A — A —
oA occurs at Ay = Az = Ay =1,

Hence the minimum of

O,
OAL | gy ny—n—1
= [AyA3A,
77 38 62, 104 , 53, 224 . 1300 , 460 . 250 o 490
Gty T gV Y T Vg g )
+ (AxAs + As Ay + AsAy)
1 14 2 142 160 20
(= 22__3 _4_235 _6__7 308__9
(37+7 3 T3 v+ 57 +307 37)
7 22 16 182 443 178 310 70
A A A__2 I By It By o DY Ry’ A9
H( A+ A+ A) =g+ 7 = g e )

+(37% = 8y* — 87" +527° — 7377 4 447° — 10+7)] |A2:A3:A4:1
1
=— g(—l +7)7(77 + 1167 + 509%) > 0,
for v € (0,2). Tt follows that g—ﬁf > 0, for Ay > A3 > Ay > 1 and v € (0,2). By the
property that A, is symmetric with respect to A;, Ay and As. We also have g—ﬁ;‘ > 0, for

Ay > A3 > Ay > 1 and g—ﬁ;‘ > 0, for Ay > Ay > A4 > 1. Meanwhile,

B,
oA

= —20(—1+9)°y(1 4+ 29)(1 + 29%) > 0,

2

P44 i an increasing function of Ay, for Ay > 1and v € (0, %).

A2
.. 82A4 o
Thus, the minimum of %75+ occurs at Ay = 1,
4

for v € (0, 2). It follows that

VAV
0A% |4,
10 20 40 290 320 40
— 6A e _102 =8 _4_505 Iy S ¢ 60 8 V.9
[4(37 LA et et V5 = 5y 607 = )
125 425 200 1000 2125 875 1550 350
o(_ 2202 249 5 AU g IO 5 2lL0 g O g 199U 5 99U g
HA-g VY Y Y Y 97+97)A421
10
=— 51+ Y)P(18 + 11y — 492 + 2+%) > 0,
for v € (0, %), since 18 + 11y — 492 + 29 > 18 + 11y — §7+ 293 = 18 + %7+ 2v3 > 0, for
v € (0,2). It follows that a;f;‘ >0, for Ay > 1 and vy € (0, 2). Thus,g—ﬁ:is an increasing

function of Ay, for A4 > 1 and v € (0, %) Moreover, it’s an increasing function with respect
to Ay, Ag, Ag and Ay, for Ay > Ay > A3 > Ay > 1, v € (0, %), since g—ﬁz is symmetric with
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respect to A;, A and As. The minimum of =t occurs at Ay = Ay = A3 = A, =1,

A,
0A4 A1=As=A3=A,=1
=[A1 Ay A3
77038 62, 104, 53, 224 . 1300 , 460 . 250 ¢ 490 ,
Gt Ty Ty g g s )
4 (A1 Ay + AL Ag + ArAy)

1 14 26 142 160 20
(= 22__ 4_235 -6 T 30 8 =V 9
(=37+2y 37+37 V5 = 5 307 = )
7 22 16 182 443 178 310 70
A A A A2 i R 4 It B o 7 8 A9
A+ A+ A) =g+ - - e g
+u&ﬁ—3&A—&f+1mﬁ—azw-+B¢ﬁ—mw%
10 20 40 290 320 40
4%&@-—m%+—$+ — 507° + 6~ 4"+ 607 — =)

3 3 3 T3 3
125 425 . 200 , 1000
PR S e T
2125 , 875 ., 1550 4 350 ,
5Vt o VT g )

A1=Ar=A3=A4=1

1
81(1+7)( 7T — 772y + 73592 + 1154+ 4 13907*) > 0,
for v € (0,2), since =77 — 772y 4 7359% + 11544 + 13907* < —77 — 773y + 735 x 27 +
1154 x (2)%y 41390 x (2)* = =3 — B3y < 0, for v € (0,2). It follows that 5 > 0,

for Ay > Ay > A3 > Ay > 1 and v € (0, g) Therefore, /A4 is an increasing function of
Ay, Ag, Ag and Ay, for Ay > Ay > A3 > Ay > 1 and v € (0, %) Thus, the minimum of Ay

occurs at A] = Ay = A3 = Ay, = 1 and take condition (2.14) into consideration,

A4|Al:4 Ap=3,A3=2,A4=1

1 +7)(616 — 24807 + 3304~% — 6477% — 3023~* — 2180+°

27<
— 4235+°% — 257077 + 280+°) > 0,

for v € (0, 1]. In fact, 616 — 2480 + 3304~ — 64773 — 3023y* — 21807° — 4235+9° — 25707 +
2807% > 616 — 2480 + (3304 — 647 x 1+ — 3023 x (§)? — 2180 x (§)* — 4235 x (1)* — 2570 X

1484901 .2 A 1484901 10158080 11681320184
( )°)7* = 616 — 24807 + 8192 oz = f(). And f(v) = sz (Y — Tasao0l )? — 1484901 S0
ﬂ)>f():§%g>0ﬁm7€®j]Rh&wmmmA4>0bL%24z%23ﬂkzl

Ay>1and vy e (0,5] O

For case (2), there are four levels k = 1, k = 2, k = 3 and k = 4. From the condition
Ps > 0, we know that P,;(1) > 0, but the positivity of Py(2), P,(3) and P;(4) are unknown.
Therefore, we split this case into four subcases:
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(2a) Py(2) = Py(3) = P4(4) =0 (ie. ko =11in (2.13));

(2b)  Py(2) >0, Py(3) = Py(4) =0 (i.e. ko =2 in (2.13));
(2¢) Pi(2) >0, Py(3) > 0, P4(4) =0 (i.e. ko =3 in (2.13));
(2d) Py(2) >0, Py(3) > 0, Py(4) > 0 (i.e. ko =4 in (2.13)).

For subcase (2a), the proof is nearly the same as case (5). As we know, in this case
Ps = Py(1) > 0, thus (1,1,1,1,1) is the smallest positive integral solution, i.e. % + é + é +

<1 i £ a, a € (2,3), since as € (4,5). The new range of a helps us to improve the

condition (2.14) to the following one:
A1Z4,A22A32A421a ) (2.21)

—

since A; = a;a > asa = %=, With o € (2,%), it is easy to check that 3 < %= <

4. Therefore, it is sufficient to show that Ay > 0, for Ay > 4, Ay > A3 > Ay > =

«

and a € (?17 g) Notice that in the proof of Lemma 2.2 all the partial derivatives of A;

are positive for Ay > 4, Ay > 3, A3 > 2, Ay > 1 and o € (0,%) until the last step to
compute Ajly 4 a5 4.9 4,01 > 0 only for o € (0,3]. Here, we take condition (2.21) into

consideration,

Dol gy g nyetynge o = (—4+5a) (=5 + 24a - 370” + 160°) > 0,

for a € (3,4). In fact, —5 + 24a — 3702 + 160° < —5 + 24a — 37a% + 16 x a2 = —5 +
24a — Za? £ fla), for a € (47 2), and f(o) = = (o — $5)? + 132 So f(w) is decreasing

in o€ (2,%). Thus, f(a) < f(3) =— 80,foroz€(45,)5)

For case (2b), the proof is nearly the same as subcase (3b). As we know, in this case
P = Py(1) + P4(2) > O thus (1,1,1,1,2) is the smallest positive integral solution for the
level £ = 2, ie. =+ = + - + L<1-22423 p¢ (3,2), since a5 € (4,5). Also, let
Ai=aB,1=1,2, 3 4. The neW range of g helps us to improve the condition (2.14) to the

following one:

121 121

Ay >4, Ay >3, A3>A4>m, (2.22)
since A; = a;0 > asf = 265. With g € (%,%), it is easy to check that 2 < % < 3.
Therefore, it is sufficient to show that Az > 0, for Ay > 4, Ay > 3, A3 > Ay > 5 ﬁﬁ

and § € (3,2). Notice that in the proof of Lemma 2.3 all the partial derivatives of A; are
positive for A} >4, Ay >3, A3 >2, Ay > 1and 5 € (0 ,5) until the last step to compute
A3l a,—4 4y=3.45=2.4,—1 > 0 only for 5 € (0, 5. Thus, we need to take condition (2.22) instead
of the rough estimate (2.14) of A;, i =1,2,3,4.

A3 |A1 =4,A2=37A3=A4=%

= — B*(—=12 — 178 + 9957 — 2703° + 7188* — 9533° + 5158°%) > 0
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for B € (1,2). Indeed, let f(8) 2 —12— 178+ 9982 — 2708% + 71831 — 95365 + 51535, Then
f®(B) = 12(—135 + 14363 — 476532 + 51504%) > 12(—2703 + 14363 — 476552 +51508%) =
128(1166 — 47655 + 51505%) = 618003(8 — %) + M >0, for g € ( ) It implies that
f"(B) is increasing in f € (2, 2). So f"(B) > ["(3) = 1001 > 0, which tells us that f'(f5) is

also increasing in § € (3, 5) Thus, f'(8) > f’(l) = 149 > 0, for 8 € (3,2). It follows that
f(B) is increasing in 8 € (5, 2). So f(B) < f(2) = o2 < 0. Therefore, Az > 0 for A; > 4,

3125
Ay >3, A3 > Ay > 2’8 andﬂe(

For case (2c), the proof is nearly the same as subcase (3c). As we know, in this case
P; = Py(1) + Py(2) + P4(3) > 0, thus (1,1, 1,1,3) is the smallest positive integral solution
for the level k = 2, i.e. i + é + é + i <1- % £q,7€ (%, 2)], since a5 € (4,5). Also, let
A; = a;y, i =1,2,3,4. The new range of v helps us to improve the condition (2.14) to the
following one:

23):

Ay >4, Ay >3, ,43>2A4>13—7 (2.23)

~
since A; = a;y > asy = 1?:—77 With v € (}L,é), it is easy to check that 1 < % < 2.
Therefore, it is sufficient to show that Ay > 0, for Ay > 4, Ay > 3, A3 > 2, Ay > 377
and v € (% T g) Notice that in the proof of Lemma 2.4 all the partial derivatives of A; are
positive for Ay > 4, Ay > 3, A3 > 2, Ay > 1 and v € (0, 5) until the last step to compute
Al g, =4 ay=3.45—2,.4,—1 > 0 only for v € (0, 1]. Thus, we need to take condition (2.23) instead
of the rough estimate (2.14) of 4;, 1 =1,2,3,4.

Ay ’A1=4,A2=3,A3=2,A4:%

1
:57(—1 4+ 7) (=544 + 15607 — 157272 4 5399% + 23497* — 13537° — 2974+° 4 5640~7) > 0,
for v € (1, 2). Indeed, —544+ 1560y — 157272+ 539+ +2349’y —13537 — 29745 +564077 <
—544 + 15607 + (—1572+539 x 2 42349 x (2)2 — 1353 x ()3 —2974 x (1)1 45640 x (2)°)42 =
76445137 Ay _ 7 44 7 4 7 4547
S5+ 1560y — U2 £ 7). And fiy) = ~T( — tetmitnye st s
f(y) < f(3) = —35280 < 0, for v € (,2). Therefore, Ay > 0 for Ay >4, Ay > 3, A3 > 2,
A4 37 and’ye (4?5)

For subcase (2d), Py(4) > 0 which implies that (1, 1, 1,1,4) is the smallest positive integer
solution to the level k = 4. So we have = + L 4+ L -+ 14 <1-212546€/(0,1), since

al

as € (4,5). Let A; = a;0, i = 1,2,3,4. Also notice that condition (2. 14) still holds here.
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(2.13) can be written as

51P5 =51(Py(1) + Py(2) + Py(3) + Py(4))

e e [ I TR
~al Al B g B )
+ (A112+55 _ 1)(142% _ 1)(A312—+55 - 1)(A412+55 _1)
—(A412+55—1)4+A412J:55(A412J;5—1)(A41;:55—2)(A412+55—3)
+(A111_535 —1)(14211—535 —1)(14311_535 —1)(14411_535 _1>
B <A411—535 _ 1)4‘1‘14411_535(14411_535 _ 1)(14411—536 _2)(14411—535 _3)
+ (A = 1)(Ay —1)(A3 = 1)(Ag — 1) — (Ay — 1)+ Ay(Ay — 1)(Ag — 2)(Ay —(23)2]4)

It is sufficient to show that R.H.S. of (1.8) is strictly larger than R.H.S. of (2.24).
Lemma 2.5 When 4 < a; <5, R.H.S. of (1.8) > R.H.S. of (2.24).

Proof. Substitute a; = %, i=1,2,3,4 and a5 = % to R.H.S. of (1.8), subtract that by
R.H.S. of (2.24), and multiply (1 — )54, we get

139 643 283 207 219 1499
ANs BA A AA (= — —0 4 =6 — =6 — =5t 4 5P
s S A A — g0t 55 3 e T !
1 1
_ 1585 1765 3965 885 5)
32 32 128 128
+ (A1 Ag Az + Aj Ag Ay + A1 A3 Ay + A A3 Ay)
3. 13, 37T, 73, . 407 o 475 . 275 o 125
(== Ry O —5*—2 5 - == o8- ==
(165+85 g0+ 50 07 4 00— 0T+ =0 165)
+ (A1Az + A1 Az + Aj Ay + Ag Az + Ay Ay + AzAy)
11 37 63 177 433 543 325 75
. __52 _53__54 _55__66 _57__58 _59
( 3073 30 T3 5078 50 T3 )
9 3 173 25
+ (A + Ay + Ag)(§53 — 146" — 555 + 568° — 757 + 546° — 559)
45 75 75 25 415 475 275 125
A= — 0%+ 8%+ Zo6t = 506° 4 — 260 — — ST 4 568 - =50
AR R 007+ 10T 57
175 625 875 1125 2125 2675 1625 375
AQ__Z iy B Y. iy v 6 7T 8 Y59
+4(85+86 g0+ 50 g0 +—0 85+85)
4 2
+A4(%53—6454+7755+15666— %67+16458— %59)

+ (—2405* — 3206° + 1606° + 32087 + 805°)
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The idea is to show that for all § € (0, %) the minimum of Ay in A; >4, Ay > 3, A3 > 2
and A4 > 1 occurs at Al = 4, A2 3, A = 2 and A4 =1 and A5 |A1:4,A2:3,A3=2,A4:1> 0,
for all § € (0, 3).

9 1
DA,0A,0A504, 128

——(=1+0)*(139 — 875 — 506” + 50° — 4255* + 8854°) > 0

for 6 € (0, ) since 139 — 876 — 5002 + 500° — 4256* + 8850° > 139 — 87 x + — 50 x (£)? +
50 — 425 x 1)0% 4 8856° = 228 — 3557 + 8854° > 22 4 8850° > 0, for § € (0,1). It follows
25 5

that m is an 1ncreasmg function of A4 for ¢ € (0, %), A, > 1. Hence the minimum of

3
985 __ oecurs at Ay = 1,

0A10A20A3
DN
0A10A20As | 4,4
139 643 283 207 219 1499
= |Ay(s — =0+ S B - gt
[ (128 12:° " 32 32 64 "
1585 , 1765 ., 3965 0
52 0 T 32 g 1285 1286)
3. 13 73 407 475 275 125
e I i, 53 — 6t = 248° 4 — 0% — T 0 - 0
+(16+8 8 T3 5 T8 165)%,4:1
1
= 128( 14 6%)(139 + 286 + 9062 + 1406° + 1155*) > 0,

for 0 € (0,%). Tt follows that ﬁm > 0 for Ay > 1, 6 € (0,%). Note that 8(2121?;2

is symmetric with respect to As and A;. Thus, % > 0, for A3 > 1, 0 € (0,%).

2 . . .
Moreover, we have ai gj is 1ncreasmg with respect to Az and Ay for A3 > A4 > 1 and

5 € (0, ) The minimum of z5—5+ 8A 8A occurs at Az = Ay =1,

9% \s
0A10As | 4y,
139 643 283 207 , 219, 1499
{A3A4(128 15s° T 3 20 - 320 "o Ter?
1 1
1585 . 1765 0 3965 +@59)
32 32 128 128
3 13 37, T3, 407 ,  AT5 275 125
A A v eV 3 _24 5 Y sT Y8 Y a9
+(3+4)( S0+ =00 — =6+ 85 5 + 85 50+ 50" = 7 =8)
37 63 177 433 543 325 75
el V) Y ISy B Y CIYST T EY o8 Y59
+( 5 85 SO 0 == =50 85+85)]A3:A421

1
128( 1+ 6)%(139 + 1435 + 1455* + 855°) > 0,
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for § € (0,1). Tt follows that 225 > 0, for A3 > A, > 1 and § € (0,1). From the
5 8A18A2 5
P

property that ﬁ is symmetric with respect to A,, Az and A4, we also get % > 0, for

Ay > Ay >1and 6 € (0, é) and 6321324 > 0, for Ay > A3 > 1 and § € (0, %) Therefore, we
N

have a_Af is an increasing function of Ay, A3 and Ay for Ay > A3 > Ay > 1 and § € (0, %)
Hence the minimum of g—ﬁf occurs at Ay = A3 = Ay, =1,

s
OAL | gy ny—ny—1
139 643 283, 207, 219, 1499
= [ApAgAy (s — 25 2252 - T st D
{ 2AsAu( 358 — 1250+ 32 64’ " e
1585 4 1765

3965 885
6 T _ 8 9
325+32(S 1285+1285)
+ (AgAs + As Ay + A3Ay)

37 73 407 . 475 275 125

3. 13
(0 =6 8 6 - 2487 + =4 57 6% — 0
<16+8 5073 3 30 78 16ﬁ>
11 37 63 177 433 543 325 75
A A AN =22 4 2053 _ 254 4 20055 20066 DO g7 OTY ey 1959
+ (Ag + Az + Ay)( g0+ g8 g0+ g0+ 85+8)
3 173 25
+(953 — 146* — Z6° +560° — —=07 4 546° — —59)}
2 2 2 2 Ao=A3=A4=1
1
= — Eg<_1 +6)7(139 4 2586 + 1155%) > 0,

for 6 € (0,%). It follows that g—ﬁf >0, for Ay > A3 > Ay > 1 and § € (O,é). By the
property that Aj is symmetric with respect to A;, Ay and A3. We also have g—ﬁj > 0, for

Ay > A3 > Ay > 1 and g—ﬁ; > 0, for Ay > Ay > A4 > 1. Meanwhile,
OAVAN 15

i _Z(_l +6)°6(3 + 55)(3 + 56%) > 0,
4

for § € (0, §). It follows that aasz is an increasing function of Ay, for Ay > 1 and 6 € (0, 1).
4
?Ns

Thus, the minimum of occurs at Ay =1,

9A2

02N
OA7 | 4,21

45 75 75 25 415 475 275 125

= [6A44(—0 — —6* + —0% + =6 = 500° + ——§0 — ——§7 + T8 — ==

[6 4(8 70 Tt 508” + — 70 T 3 )

175 625 875 1125 2125 2675 1625 375
2(——0* + —0° — —¢* §° — 80 =" - —5% + —¢°
+(8+8 51T 73 g 0 TR 8+8)A4:1

:Z(_1 +6)°5(—27 — 106+ 56%) > 0,
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for 6 € (0,1). Tn fact, let f(5) £ —27 — 106 + 502 = 5(5 — 1)2 — 32. Thus, f(5) < f(0) =
—27 < 0, for v € (O,%). It follows that 8;%5 >0, for Ay > 1and 6 € (0,%). Thus, g—ﬁi
is an increasing function of Ay, for Ay > 1 and ¢ € (0,1). Moreover, it’s an increasing
function with respect to Ay, Ay, Ay and Ay, for Ay > Ay > A3 > Ay > 1, 0 € (0,7),
since g—ﬁj is symmetric with respect to A;, Ay and As. The minimum of g—ﬁi occurs at
A1:A2:A3:A4:1,

AN
0A4 Aj=As=A3=A4=1
139 643 . 283 207 219 1499
= | A1 A As(— — —— 0+ % — 5 - et 60
{ A58 — 7330+ 52 32 61’ " e
1585 1765 3965 885
o 56 67 o 58 _(59
32 0 T3 1280 T )
+ (A1 A + A1 Az + AxA3)
3 13 37 73 407 475 275 125
(—2 4 262 - g 2t 2480+ 0 - ST s 0
<16+8 50 T8 3 g0 T3 165>
11 1 4 4 2
+ (A1 + As + Ag)(—g(? + %53 — %54 + %55 — %66 - %57 — %58 + ?59)
45 75 75 25 415 475 275 125
+3A3(50 — 0%+ 8%+ 0" = 508% 4+ — =00 — =287 4 S 0% - —25)
175 625 875 1125
Ay (———0% 4 ——§% — =5t 20
+ 2A4( 30t g0 T3
212 2 162
__556 4 6_7557 — 358 + 3_7559)}
8 8 8 8 A1=A2=A3=A4=1

1
:@(—1 + 6)°(—139 — 21406 + 22626% + 24525° + 26855*) > 0,
for § € (0, 1), since —139 — 21406 + 226202 + 24526° 4 26856* < —139 + (—2140 + 2262 x 1 +
2452 % (3)* + 2685 x (£)*)6 = —139 — 32085 < 0, for 6 € (0, 1). It follows that $3% > 0, for
Ay > Ay > A3 > Ay >1and o € (0, %) Therefore, A5 is an increasing function of A, As, A3
and Ay, for Ay > Ay > A3 > Ay > 1 and § € (0, %) Thus, the minimum of As occurs at
Ay = Ay = A3 = Ay = 1 and take condition (2.14) into consideration,

A5 |A1:4,A2:3,A3:2,A4:1

1
:E5(417 — 15726 + 1704562 + 6206° — 63346 — 76600° — 57606° — 214007 + 2456%) > 0,

for 0 € (0, 1), since 417 —15726+ 170402 +6205° — 63346* — 76600° — 57606° — 214067 +2450° >
417 —1572 % £ +17040% 4 (620 — 6334 x £ — 7660 x (£)? —5760 % (2) —2140 x (2)*)§3+2456° =
218 4170402 — 125338 53 1 2456° > 213 4 (1704 — 123338 5 11524 2456° = 313 4 98956252 4 94568 > 0,

for 6 € (0, %) It follows that A5 > 0 for A1 >4, Ay >3, A3 >2, Ay > 1and § € (0, %) ]
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2.2 Proof of Theorem 1.3

As we state in introduction, the estimate of Dickman-De Bruijn function ¢ (z, y) is equiv-
alent to a sharp estimate of Q,, (or P, by (1.2)). We've already got the estimate of P,, n <5,
thus, apply this to our estimate of ¥ (z,y). In detail, Let p; < ps < -+ < p, be five prime

numbers up to y. It is clear that plllpé2 . -pl55 < z if and only if lolglz + lolgz kfgz < 1.
log py log po log pn
Therefore, 1(x,y) is precisely the number @,, of (1.1) with a; = lfgg;”_, 1 <i < n. Moreover,

by (1.2), ¥(z,y) is also precisely the number P(a;(1+ a),as(1 + a),---
4=+ttt

According to the number of prime numbers up to y, we split the proof of Theorem 1.3
into three cases:

,an(1 4+ a)), where

Case (i): H<y<T,;
Case (ii): 7 <y < 11;
Case (iii): 11 <y < 13.

Case (i) and (ii) have been proven in [18]. For Case (iii), we have five prime numbers p; = 2,

pa=3,p3 =5, py =7 and ps = 11, thus q = lee2tls 3“{(’%‘:;“% THogll " Therefore,
Uiz, y) = Qs
_ P(logyc(1 N log(2 x 3 x5 %7 x 11))’ logyc(1 N log(2 x 3 x5 %7 x 11))’
log 2 log x log 3 log
1ogx(1 N log(2 x 3 x5 x 7 x 11)>7 1og$(1 N log(2 x 3 x5 %7 x 11)>’
log 5 log x log 7 log x
log = log(2 x 3 x5 x7x11)
logll( log x )
<l{(log:1: 10g(3><5><7><11)>(10g93 log(2><5><7><11))
— 5! log 2 log 2 log 3 log 3
logz log(2x3x7x11) logz log(2x3x5x11)
.(10g5 log 5 )(log7 log 7 )
logz  log(2x3x5x7)
'(1og11 log 11 )
logz  log(2x3x5x7).
N [(logll log 11 )
log = log(2x3x5x7), logz log(2x3x5xT7)
a <log 11 log 11 )(log 11 log 11 )
.<logx log(2><3><5><7)_1)<logx 10g(2><3><5><7)_2)
log 11 log 11 log 11 log 11
.(logx log(2><3><5><7)_3)
log 11 log 11
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:m{10g210g310g510g Tlog 11

1

(log z 4 log 1155) (log x + log 770) (log = + log 462)

- (log z + log 330) (log = + log 210)

— ——[(log z + log 210)°
10g5 11 [( ogxr 0og )
— (log x 4+ log 11 + log 210) (log = 4 log 210)(log x + log 210 — log 11)
- (log x 4+ log 210 — 21og 11)(log x + log 210 — 3log 11)]}.
O
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