
Inventiones math. 46, 8 1 -  97 (1978) Inventiones 
mathematicae 
�9 by Springer-Verlag 1978 

The Signature of Milnor Fibres and Duality Theorem 
for Strongly Pseudoconvex Manifolds 

Stephen S.-T. Yau* 

School of Mathematics, The Institute For Advanced Study 
Princeton, New Jersey 08540, USA 
and Mathematics Department, Harvard University, Cambridge, Mass. 02138, USA 

w O. Introduction 

Let M be a complex manifold. A real-valued C~176 r on M is said to be 
strongly plurisubharmonic if and only if the hermitian form 

dz i d~j 
~2 ~p 

~, s= 1 Oz~Oej 

is positive definite with respect to any system of local coordinates (z 1 . . . . .  z.). The 
complex manifold M is said to be strongly pseudoconvex if there is a compact 
subset B = M, and a continuous real valued function tp on M, which is strongly 
plurisubharmonic outside B, and such that for each c~R, the set 

Bc= {x~M: ~(x)<c} 
is relatively compact in M. Note that a strongly pseudoconvex manifold is a 
modification of a Stein space at finitely many points. F rom now on we assume that 
M is a strongly pseudoconvex manifold of dimension n. Let A be the maximal 
compact analytic subset in M. Then A has a finite number of connected 
components A~ (~ = 1 .. . .  , p). Each A~ consists of a finite number of irreducible 
components X~, (i = 1 . . . .  , n~). 

Duality Theorems for compact complex manifolds (such as Serre duality) are 
well known. Serre duality is still true for open manifolds but one has to use the 
cohomology with compact supports. It is a natural question to ask for a duality 
Theorem for strongly pseudoconvex manifolds without using cohomology with 
compact support. The following theorem is the first theorem in this direction. 
Let f2v be the sheaf of germs of holomorphic p-forms on M. Let xV(M)= 

~ ( - 1) i dim Hi(M, Or). 
i= l  
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Remark. The only difference between this definition and the classical definition of 
Euler Poincar6 characteristic of a coherent sheaf on a compact complex analytic 
space is that we do not consider dimH~ f2 p) because it may be infinite 
dimensional. 

Theorem A. Let M be a strongly pseudoconvex manifold of dimension n >__ 4. Suppose 
the maximal compact analytic subset in M can be blown down to isolated hypersurface 
singularities. Then 

zP(M)=(-1)"Z"-P(M),  2 < p < n - 2 .  

Let f:  (122"+ 1, 0 )~(C,  0) be the germ of a complex analytic function with an 
isolated critical point at the origin. For e > 0 suitably small and fi yet smaller, the 
space V' = f -  1 (6) ~ D~ (where D~ denotes the closed disk of radius e about 0) is a real 
oriented 4nzmanifold with boundary whose diffeomorphism type depends only on 
f In fact, Milnor [18] proved that V' has the homotopy type of a wedge of 2n- 
spheres. In case of two dimensional singularities, various signature formulae are 
known. For example, Hirzebruch-Mayer [11] have a formula for the signature 
w h e n f  is of the type x a + yb q_ z r and Steenbrink [27] has a formula for the signature 
when f (x ,  y, z) is weighted homogeneous. For the double points, i.e. f (x ,  y, z) is of the 
type g(x, y)+ z 2, it is known that the intersection pairing of V' is the same as a 
symmetrized Seifert matrix of the compound torus link defined by g. Furthermore, 
the signature of a link is by definition the signature of this symmetrized Seifert 
matrix. In [25] Shinohara had a simple formula for the signature of a compound 
knot; hence if g-  1 (0) is irreducible, a simple formula for the signature of V' in terms 
of the Puiseux pairs of g is available. In case g-l(0) has several branches at the 
origin, Murasugi [19] developed a method to find a Seifert matrix for the link 
defined by g and compute the signature. Recently, Durfee [4] has given an 
interesting formula for the signature a of V' in terms of topological invariants of a 
resolution of the singularity at 0 of the complex surface f-1(0).  It is a natural 
question to ask for a formula for the signature a of V' for higher dimensional 
singularities. In the following theorem, the signature of even dimensional 
singularities is given in terms of topological and analytic invariants of a resolution 
of the singularity. 

Definition 0.1. Let n: M ~  V= {x6C2n+l:f(x)=O} be a resolution of the singu- 
larity. The signature of M, denoted by a(M), is defined to be the signature of 

- 1 (D~ n V) where D~ denotes the closed ball of radius e about 0, i.e. the signature of 
a closed tubular neighborhood of the exceptional set A = ~-1 (0). 

Theorem B. Let f(zo, z l , . . . , z2 ,  ) be holomorphic in N _ C  2n+1, n > l ,  a Stein 
neighborhood of(O, 0 . . . . .  O) with f ( O, 0 . . . . .  O) = O. Let V = N n f -  1 (0) have (0, 0 . . . .  , O) 
as its only singular point. Let tr be the signature of V'. Let n: M--* V be a resolution of 
V. Then 

2 n - q  q -  1 

p=q  p=O 

for 2<_q<__n. 

In case of surface singularities, we have the following inequality. 
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Theorem C. Let f ( x ,  y, z) be holomorphic in N, a Stein neighborhood of(0, 0, 0) with 
f(O, O, O) = O. Let V = N ~ f - 1 (0) have the origin as its only singular point. Let tr be the 
signature of  V'. Let ~r: M ~ V be a resolution of  V and s be the number of irreducible 
components of  the exceptional set A = rr- 1 (0, O, 0). Then 

~ <  - s  + 2 d i m H l ( M ,  (9) + dim HX(M, t2x). . 

Our presentation goes as follows. In w 1, we recall some definitions and 
notations and describe some invariants of a resolution. In w 2, we study the higher 
dimensional singularities. In particular, Theorem A and B are proved. In w 3, we 
concentrate on surface singularities. We prove that Laufer's formula [14] can be 
obtained without using Riemann Roch Theorem. Moreover,  one can also obtain 
Durfee's formula for signature (Theorem 1.5 of [4]) without using his method of 
signature defect. 

We gratefully acknowledge the constant encouragement and the interest of Professor Henry Laufer 
in this research. We would like to thank Professor Bennett, Professor Coleff, Professor Deligne and 
Professor Siu for their helpful discussion of Mathematics. Finally we would also like to thank Professor 
Durfee, Professor Hironaka, Professor Milnor, Professor Mumford, and Professor Wagreich for their 
interests in this work. 

w 1. Preliminaries 

The signature a of an arbitrary oriented 2n-manifold W with or without boundary  
is defined as follows: There is a symmetric bilinear intersection pairing ( , )  on 
H,(W; R) (this form is symmetric only if n is even) defined by setting 

(x, y) = (x'w y') [ w ]  

where x' and y' in H"(W, 8W;R) are Lefschetz duals to x and y in H.(W;R)  and 
[W]eH2, (W,  8W; R) is the orientation class. This bilinear form may be diago- 
nalized, with diagonal entries + 1, 0 and - 1. The signature tr of Wis the signature of 
this bilinear form, namely, the number  of positive minus the number  of negative 
diagonal entries. 

Now let us describe the invariants of a resolution. Let V be Stein space with p as 
its only singularity. It follows from Hironaka 's  work [9] that a resolution r~: M ~ V 
always exists. By Lemma 3.1 of [13], we know that dim H i(M, t~) = dim (R in ,  O)p for 
i > 0. The genus p of the singularity of V is defined as 

p = dim c H " -  1 (M, (_9). 

This number  is independent of the resolution. (See Theorem A of [29].) 
In case V has a surface singularity, we may write the compact  complex one- 

dimensional exceptional set A = re- 1 (0) as the union of its irreducible components:  

A = A I U . . . u A  s. 

The intersection matrix [A i �9 A j], where A i �9 Aj is defined as the number  of points of 
intersection of A i and Aj for i+j ,  and the self-intersection of A i for i = j  (the first 
Chern class of the normal  bundle to A i in M), is known to be negative definite. 
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Recall that V is Gorenstein if there is a non-zero holomorphic two-form on its 
regular points V\{0}. We remarked that hypersurface singularities and complete 
intersections are Gorenstein singularities. 

Definit ion 1.1. Suppose that V is Gorenstein. Let gi be the geometric genus of A i, i.e. 
the genus of the desingularization of Ai. The canonical divisor K = ~ k~A~ is the 
divisor on M uniquely determined by the equations 

Ai  . K = -- Ai  . Ai  + 2 gi--  2 + 26 i 

where 61 is the "number"  of nodes and cusps on A i. Each singular point on A~ other 
than a node or cusp counts as at least two nodes. 

The self-intersection of K is the number 

K 2  = E ki k jAi"  A j  
l , J  

which is a topological invariant of the resolution ~. Finally recall a well-known 
result of Samuel [23]. 

Theorem 1.2. Le t  f :  U c C ~ + 1 "> C be an analytic funct ion on a neighborhood U o f  O in 
C "+1. Suppose f (O)=O and 0 is an isolated critical point. Then there exists  a 
polynomial fo:C"+l--~C with an isolated critical point at 0 and an analytic 
isomorphism o f  a neighborhood U 1 o f  O onto a neighborhood U 2 o f  O which sends the 
points o f f =  0 on points o f f  o = O. 

w 2. Proof of Theorem A and Theorem B 

To begin with, let us recall some techniqual lemma in [1]. 

Lemma 

0 

0 

2.1. Let  

' A1- - - -~  A '2 0) A " ----~ A ~ A 4 ~ A '5 ~) A " 5 ~ A 6 

, B x  , B ' 2 G B  ~ ,B  3 ,B  4 , B ; G B ' ~  ,B  6 

! 
,A 7 , A 8 0 A '  ~ >A 9 , . . .  

,B7 , B ~ @ B ~  '/~9 ' " "  

) t t r  
'A3 , -2  A 3 . _ l ~ A 3 , _ l  

, B3 ,_  2 ------~ B'3,_ l t~ B'~n_ X 

A3. ~ Aa.+ 1 

-t ..... t 
B3.-----~ B3n+ 1 

,0 

,0 
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, ,, < " <  
be a commutative diagram with exact  rows. Suppose n l ,  n 2 and g3 i- 1, g3i, 1 _ t _ n are 
isomorphisms and all the vector spaces are f in i te  dimensional except  possibly A'2, B'2, 
A'~_ 1, A3 i, B~i -  1, B3i, 1 < i < n. Suppose also that B'3~+ z = O f o r  1 < i < n -  1. Then 

( -  1)idim A3i+ 1 = ( - 1 ) i d i m B 3 i + l +  ~ ( -  1)i dtm A3i+ 2 . .  , 
i=O i = 0  i=1  

I f  we assume that n 1, n' 2 are monomorphisms instead o f  isomorphisms, then 

(-1)idimA3/+t__> ( - 1 ) i d i m B 3 i + l +  ~ ( -1) id lmA3i+2 . -  , 
i = 0  i = 0  i=1  

In fact ,  

~ ( - 1)/dim A 3 i + 1 - dim coker n 1 = dim coker n~ 
i = 0  

= ( - 1 ) i d i m B a i + l +  ~ ( -1 ) i d imA; i+2  �9 
i = 0  i=1  

P r o o f  o f  Theorem B. By Theorem 1.2 any holomorphic function which agrees w i t h f  
to sufficiently high order defines a holomorphically equivalent singularity at 
(0, 0 . . . .  ,0), [23, 8]. So we may t a k e f  to be a polynomial. Compactify C 2"§ to 
p2,+1. Let ~ be the closure in p2.+1 of 

Vt = {(Zo ' zl . . . . .  z2.)~C2, + 1: f (Zo ' Z l , . . .  ' z z . ) =  t}. 

By adding a suitably general high order homogeneous term of degree e to the 
polynomial f, we may additionally assume that ~'o has (0, 0 . . . . .  0)~C2.+ 1 as its only 
singularity and that P,, is non-singular for small t ~ 0. We may also assume that the 
highest order terms of f define, in homogeneous coordinates, a nonsingular 
hypersurface of order e in p2,  = pZ,+ 1 _ C2,+ 1. ~ is then necessarily irreducible for 
all small t. Without loss of generality, we take N = C  2"+ 1. Then V= V o. 

For  any 4 k-dimensional topological manifold S, the signature of S is denoted by 
a s. Let B, be an open Milnor ball of radius e. Let M be the resolution of ~'which has 
M as an open subset. Then for small t, 

a :  a v t  - G v t  _ B~ c~ V t  

: a V t  - -  f f V o  - B~ c~ V o  

since the family { ~} is differentiably trivial away from B e. Hence 

a --~ a v t  - f f , ~ _  ~ -  l(B~ n Vo ) 

= a V ~  - -  ( a ~ r  - -  o '~  _ t (B~ n Vo) )  

= av, - a ~  + a(M).  (2.1) 

In order to calculate a r t -  a~ ,  we need the following lemmas and propositions. 
Let X be a complex analytic subvariety of C" and Jx  be the ideal sheaf of X in 

C". Let f2~, be the sheaf of germs of holomorphic p-forms, on C". There are two ways 
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to associate a sheaf of germs of holomorphic p-forms on X, namely, 

and 

P - -  P P �9 ~ x -  tac-/{c~ o~/X* = O} 

where X* is the regular part  of X. ~25 is obtained by taking the sheaf of germs of 
holomorphic p forms in the ambient space modulo those germs of holomorphic p- 
forms whose restriction on regular part  of X is zero. This is a coherent sheaf I-5]. 

Observe that f)~ coincide with f2~ at regular parts of X and we have a natural 
surjective map ~p: t )$-~ f25. Let K p be the kernel of this mapping. Then 

O--~ Kp---, f2~---~ f2er---~ O 

is exact. K p is supported on singular part  of X since tp is isomorphic offsingular part  
of X. 

Lemma 2.2. Let t be a coherent analytic sheaf on X.  Let s be a section o f t  over X.  I f  
supp s = Y is a nowhere dense proper analytic subvariety of X,  then s is a section of the 
torsion subsheaf of t. 

Proof. Consider the sheaf homomorph i sm 

~: O x ~ t  

defined by multiplication by s. Let j be the kernel of ct which is a coherent subsheaf. 
We claim that for each x e  Y, J x  # 0. Suppose on the contrary that J x  = 0 for some 
x e  Y. Then there exists an open neighborhood U of x such that J / U  = 0  since the 
support  of J is closed. This means that ~ is injective on U. However, since Y~ U is 
nowhere dense in U and s is zero on U\Y, ~ is a zero map on U\Y .  This leads to a 
contradiction. Q.E.D. 

Proposition 2.3. I f  X is irreducible at every point in singular part of X,  then K p 
= torsion of [2Px. 

Proof. By the Lemma  2.2 and the Remark  before Lemma 2.2, we need only to prove 
torsion of 0 [  is in K p. It is clear that the support  of torsion subsheaf of f)P is in 
singular part  of X. Let o~st)~:, x be a torsion element. Let 69 be a section of 0 5 over 
U, a neighborhood of x such the germ of 69 at x is co. Since oJ is a torsion element, 
there exists 0 # g s  d~x, x such that g .  w = 0. Let ~ be a section of (9 x over U such that 
the germ of ~ at x is g. Then ~- 69 = 0 in a perhaps smaller neighborhood of x. In 
particular ~- 69 = 0 in a regular part  of X near x. Since ~ ~ 0 on regular part  of X and 
x is irreducible at x, 69=0 on regular part of X near x. Therefore r Q.E.D. 

F rom now on, we assume that X is a hypersurface, 

X = { ( z  1 . . . . .  z , )~C": f (z l ,  ..., z,)=O} ~ C" 

and S X  = singular part  of X = {0}. 

Proposition 2.4. Let 69~g2~., ~ have image ~o~)Px, ~; then ~o~(KP)x<=> 3 ct ~ fa~r+, ~ such 
that d f  A 69=f~ ( O < p < n - 1 ) .  
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Proof. Since X is a hypersurface with only isolated singularity, X is normal. In 
particular, X is irreducible at each point. 

" ~ "  Suppose ~oe(KP)~. Then there exists g 4= 0 in ~0x, x such that g.  o2 = 0. Let 
and & be the representatives ofg and ~o in the ambient space. There exist a p-form ~1 
and p -  1 form fl such that 

g ~ = f ~ l  + d f  Afl 

~,df A & = f d f  A ~1. 

Suppose d f A 62 = ~ a I dZj  and d f A Cq = ~ b z dZ l where dZ I = dzil A ... ^ dzip + 1, I 
I I 

=(i l ,  . . . ,  ip+ 1) and i 1 < . . .  < ip+ 1. Hence ga I =fb~ for all I. Since g ~ 0  on X, f d o e s  
not divide g. But f is irreducible, so a I = a'1f for some holomorphic germs a~ in the 
ambient space for all I. Hence 

d f  A ~ = ~ a t d Z 1  
I 

= / ( E  a} dZ,) 
I 

= f . ~ '  where a ' = ~ a ' 1 d Z r  
I 

Let ~ be the corresponding element of a' in liP+ 1 Then we have 
X ,  x " 

d f  ^ ~o =f~. 

" ~ "  Conversely, we need ColeiTs residue theory. Let ~ be a p-form in a 

neighborhood U of the origin which is polar in X, i.e. ~ =-~ where ? is a regular p- 
J 

form in U. For  any C ~ 2 n - p -  1 form a with compact support 

lim ~ ~A~ 
e~O {Ill= e} 

exists. The residue Rx(~) of ~ along X is a C-linear functional on the C ~ 2n - p -  1 
forms with compact supports which is defined as follows. 

Rx(~): A~"-~-~(U)--, C 
Rx(~)(O)=lim ~ ~AO. 

This residue Rx(~) of ~ is actually continuous in the sense of distribution. We need 
the following two basic properties 

(1) If ~ is regular, then Rx(~)=0 
. d f  

(2) If 7 = 7 -  ^ r/, then 

(d f  ) (0)= 2ni~xtl^O, Or R x --f- A rl 
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N o w  the converse part  of  Propos i t ion  2.4 follows easily f rom (1) and (2). First 
choose  ~) and ~ be the representatives of co and a in the open ne ighborhood  U or  
origin such that  

d f  ^ ~) = f $  +fl~ where/~ is a (p + 1)-form on U. 

~ d f  A~o=~t+fl. 
f 

Let X* be the regular part  of  X. Then 

X* 

= 0  for all O e A ~ - P - I ( U )  

= ~ = 0  on  X*. 

By L e m m a  2.2, o9r p. Q.E.D. 

Remark. Actually the converse par t  of  Proposi t ion  2.4 is not  needed for the rest of  
our  work. 

Theorem 2.5. KP=O for  O < p < n - 2 ,  i.e. O~ is torsion f ree  for  O < p < n - 2 .  

Before we prove this theorem, let us recall a beautiful Theorem due to Saito. Let 
R be a noether ian commuta t ive  ring with unit. The depth of  an ideal I of  R is the 
maximal  length q of  prime sequences a 1 . . . .  , aqr with: 

i) a 1 is a non-zero-divisor  of  R 
ii) a i is a non-zero-divisor  of  R/a  1 R + . . .  + a i_ 1 R, i = 2 . . . .  , q. Let M be a free R- 

p 

module  of  finite rank n. We denote  b y / ~  M the p-th exterior p roduc t  of  M (with 
0 - 1  

A M = R a n d  A M = 0 ) .  
Let  o91 . . . . .  ogk be given elements of  M,. and (e 1 . . . . .  e,) be a free basis of  M. 

o91A ""  A o g k =  ~ ai~ ...ik eil A . . .  A e i k .  
1 <il <'"<itc<n 

Let  I be the ideal of  R generated by the coefficients a i .... ix, 1 < i 1 < . . .  < i k <n. (We 
put  I = R, when k = 0). Let  

P 
Z P : = { o g ~ / \  M :  o9 AO91A ... ^ ogk=0}, p = 0 ,  1,2, ... 

H P : = Z  (ogi ̂  A M), p = 0 ,  1, 2, .... 
i 

In the case when k = 0, we unders tand Z p = 0, H p = 0 for p = 0, 1, 2, . . . .  

Theorem 2.6 (Saito). (i) There exists an integer m > 0 such that 

I m H p = 0 for  p = O, 1, 2 . . . .  , n. 
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(ii) HP=O for O<p<prof  (I). 

Now we prove the Theorem 2.5. Let A=(9c,,o be the ring of germs of 
holomorphic functions at origin. This is a noetherian regular local ring with unit. In 

particular, it is Cohen-Macaulay of dimension n. Let I = (~-~fzl, ..., 8~,) be theideal 

in A. Since X has an isolated singularity, Oz I . . . .  '~-z. forms a system of 

parameters of A by Hilbert Nullstellensatz. r~aj ,  , Of'~ is a prime sequence 
( & l  "'" Oz.J 

because of Corollary 1 of Appendix 6 of [30]. Hence prof (I)= n. By Theorem 2.6, 
we have for any OeQf>,o, l<p<=n-1  

O A d f = O c > O = d f  ^O 1 (2.2) 

p - 1  for  s o m e  01 ~r n, o. 

Let roe(KP)0 where O < p < n - 2 .  Let & be a representative of co. Then by the 
proof of Proposition 2.4, there exists a in op+'  such that ~C' ,  0 

df  A & =fa  

df ^ f ~ = d f  ^ d f  ^Co=O 

~ df  ^~=O 

~ = d f ^ ~  1 for some ~r  o since p + l < n - 1  

d f  ^ & = f d f  ^ a  1 

=~ d f  ^ ( & - f a a ) = O  

& - f a a = d f ^ f l l  for some fll~O~z~ 

eS=fa I + d f  ^ fll 

=> ~ = 0  in ~ , o .  Q.E.D. 

Now we return to the proof of Theorem B. Let ~'be the hypersurface defined by 

z ,+,if , o  , z,  , . . . ,  z : . )  e ,=0 
\Z2n+ 1 Z2n+l  Z2n+ 1 --tZ2n+ 

in p2,+ 1 x D, where D r is a disk of radius e in C. By Theorem 2.5, we know that f)~, is 
torsion free for O<p<2n. We claim that 

O~ZlD ~ , = ~2~ld t A ~ -  1 

the sheaf of relative p-forms of re: V--+ D~, where rt is the natural projection is also 
torsion free. To prove this it is enough to consider the point ((0, 0, ..., 0); 0) where 
(0, 0 . . . .  ,0) denotes the origin of C z" § 1, the original affine space. Let us denote this 
point by 0. Let a~(t)f,/m)o. Suppose there exists 04=ge(9~,, o such that g ~ = 0 .  Let 
a~'ef](,, o such that the image of co' in (t]~/o=)o is co. There exists ctet2~.o 1 such 

p that goY=dtAa .  Let ~, &' and ~ be elements in d~r=,+2• fap2,+l• 0 and 
p - 1  ~ t2v~,+ 1• ~.  o such that their image in dPv, o,f2~, o, and t2~7o ~ are g, oJ, and a re- 

spectively. 
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~r p t There  exist he~Pp2 . . . .  o~,o,fll, Wle~r2P2"+t xD~, 0, "Yl, f12, 51, ~2e~'2~ ~--1 • 0, 
T2, 63e12~,7~, • 0 such that &~, fl~ and Y~ do not involve dr, ~'=(0'~ +d t  ^ ~ 
a n d  

(~ + ( f  - t )  h)[&' + ( f  -t)(fl~ + dt ^ J2) + ( d f  -dt)(7~ +dr A J3) ] 

= d t ^ [~ + ( f -  t) f12 + (d f -  d t) Y2] 

(~ + ( f -  t) h) [&'l + ( f -  t) fll +d f ^  ~'1] =0. 

Since Df, is torsion free and g =t: 0 in (9r o, the image of &'l + ( f -  t) fl~ + d f  ^ 7~ in 
~f,, o is zero. Hence 

zero of f]f,, o 

= the  image o f ~ o ' ~ + ( f - t ) f l l + d f ^ y  1 in f]~,o 

= the  image o f ~ o ' l + ( f - t ) f l l + ( d f - d t ) ^ y l + d t ^ ?  ~ in f]~,o 

= c o ~ + d t ^ 7  in Of,,o 

where 7 is the image of ?~ in ~ -1 ~, ~ f2f,, o and ~o'~ is the image of co I in Of, o. 

09 in (f]f,/m)o 

=image o f w ' ~ + d t ^ 7  in l]f,/m,o 

= 0  in(f]f,/oo) o. 

This proves that the sheafs of relative p-forms Of,/o~, 0 < p < 2 n, is also torsion free. 
In particular, l]f,/o,, 0 < p  <2n, is a n-fiat coherent analytic sheaf [p. 154, 6]. The 
analytic restriction of f2f,/m on the fibre ~ gives the sheaf of holomorphic forms Of,, 
of the fibre. Therefore the Euler-Poincar6 characteristic 

xP(V,) = ~ ( -  1) a dim c H~(~, ~f,,) 
q=O 

of ~ t  is equal to the Euler-Poincar6 characteristic 

XP(~'o) = ~ ( - 1)q dim c Hq(~'o, ~f,o) " 
q=O 

of ~f,o for O~p<=2n. By (2.1) and Hodge index Theorem, we have 

2n 2n 
a =  ~ XP(~) - ~ f f ( h l ) + a ( M )  

p=0 p=0 
2 n - q  q -  1 2 n - q  q -  1 

= ~ XP(~'o)+2 ~ XP(~'o) - ~ XP(AT)-2 ~ ZP(AI)+a(M) (2.3) 
p = q  p=O p = q  p=O 

by Serre duality. 
In order to calculate XP(~'o)- XP(/~), we need the following Theorem. 

T h e o r e m  2.7. Let V={(Zl, ..., zn):f(zl,  ..., z,)=0}__.C" be a hypersurface with 
origin as its only singularity. Let co be a holomorphic p-form on a deleted neighborhood 
U\{0} of O in C" where O<__p<n-3. Then co has a holomorphic extension to the 
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origin, i.e. there exists oY eF(U, (2~,) such that the restriction of og' to U\{0} are equal 
to  09. 

Proof. Let ~P=f f2~ ,  +d f ^  f2~; 1. We claim that for 0 < p  < n - 1 ,  the following 
sequence 

O___+OOn ZP 1 0 ~ r  "q ( ) p - - i + l ( ~ ' ~ ; i _ ) . . . .  
' f 2 c .  G f2c.--~ . . . . . .  c. "~ ~"c. ~ "~c. 

"~c- ~ *~ , ~P ~ 0 (2.4) 

is exact at 0 in C" where 

q~(~,/3)=/~+df^/3 (~,/3)Ef2~.@f2~z 1 
r~(a, f l )=(df  ^ ~ , d f  ^ /3+( -1 ) i foO (a, /3)eQ~;iO Q~= I-1 l < i < p - 1  

rp(ot) = ( d f  ^ ~, ( -  1)P/a) aef2c~ 

are (P-linear. 
Obviously, by the definition of qJ, (2.4) is exact at the stage ~P. Let (a,/3)e 

p--1 p--2  f2c-, o �9 f2c.. o. Then 

~1 o 7~1(0~ , f l ) : O ( d f  ^ a, d f  A f l - f  c 0 

= f d f  ^ a + d f  ^ ( d f  ^ f l - f e )  
= 0 .  

Let (7, 6)ef2~,, o G f2~; lo such that ~(7, 6)=0, i.e. 

f ~ + d f ^ 6 = O  
: ,  f d f  ^7= - d f  ^ d f  ^6=O 

d f  ^ 7=O 

=~ y = d f ^ ~  for some aef2~;lo by (2.2) 

d f  ^ ( f ~ + 6 ) = O  

f c ~ + 6 = d f ^ f l  for some flef2~;~ by (2.2) 

a =df^/3 - f~ .  
p p 1 Hence % (a, fl) =(~, 6). The sequence (2.3) is exact at the stage f2c, ' o �9 t2c=, o. We 

p l p ~ 1 are going to show that the sequence (2.3) is exact at the stage tic;, 0 @ tic;, o for 
1 < i < p - 1 .  Let (a,/3) be an element in fl~;~o t @ fl~;~o ~. Then 

�9 ~ o ~ci+ ~(~,/3) ='ci(df^ ~, d f ^ / 3 + ( -  1) ~+ xf~) 

=(d f ^  d f ^  a, d f ^  (d f ^ / 3 + ( -  1) i+ i f  a ) + ( -  1)~fdf ^ or) 

=(o, o). 

Conversely, let (7, 6)e~z; , ioo  ~-~-x ~c- ,  o such that vi(7, 5 ) = 0 ,  i.e. 

(df  ^ ~, d f  ^ 6 + ( -  1)'f~;)=(0, O) 

=~ 7 = d f ^ a  for some ~ef2~z;~o -a by (2.2) 

d f ^ ( 6 + ( -  1)/fa) = 0  

5 + ( - 1 ) * f a = d f A f l  for some/3ef2~z;,~o -2 by (2.2) 

d = d f  A /3+(-1)~+ t fo~. 
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Hence T i + 1(~, fl)= (7, 3) and the sequence (2.3) is exact at the stage t2~:~,/0 �9 f2~,io 1 
for 1 < i < p -  1. The sequence (2.3) is also exact at the stage f2~ 0 because ,p is 
injective. Since (2.3) is a complex of coherent sheaves and it is exact at origin in C", 
there exist polydisc A containing 0 such that (2.3) is exact on A. We have the 
following sheaf exact sequences on A 

, f2~. (~ f2~ ---~ImZp_l----~0 
f2c2. @ f2~ ~Imzp_z---~0 

IoP--lri~OP--2-~ Imz  1 ---~0 
f2~:~ @0~:~ 1 ~ ~ ,  -~ O. 

cohomology exact sequence on A\{0}. We see 

0---, f2~ ~P 
0--+Im zp_ 1 

0--~ Im z 2 
0---~ Im z 1 

Consider the corresponding long 
inductively that 

H'(A\{O}, Im zp_~)=O for 

n i (A \ {O} ,  Im zp_ z) = 0 for 

H'(A\{O}, Imza) =0'  for 

and 

H'(A\{0}, ~P) =0  for 

l < i < n - 3  

l < i < _ n - 4  

l < i < n - p - 1  

l < i < n - p - 2 .  

We have the exact sheaf sequence 

0--. ~ P ~  t ~ ,  - .  0(, -* 0 (2.5) 

(2.5) yields the usual exact long cohomology sequence. Since H 1 ( A -  {0}, @v)=0 
for 0 <p  < n -  3, every holomorphic p-forms ogeF(A c~ V -  {0}, ~(,) = F(A\{0}, f)~) 
will be the restriction of a holomorphic p-form ~ F ( A \ { 0 } ,  f2~,). ~ extends to be 
holomorphic in A by Hartog's theorem and then restricts back to V to give a 
holomorphic extension of w. Q.E.D. 

Corollary 2.8. Let V= {(zl, ..., zn): f ( z l  . . . . .  z,)=0}_~C" be a hypersurface with 
origin as its only singularity. Let x: M ~ V be a resolution of  the singularity of  V. Then 

n*: F(V, ff2~,)--* r ( M ,  f2~) 

is bijective for 0 < p < n - 3. 

I f f i s  a polynomial and the compactification ~'of Vin P" is irreducible and has 
no singular points other than the original singular point 0~ V, then 

~*: r(~ ~)-~ r(~, a~) 

is bijective for 0 < p < n -  3 where ~: M ~ V is a resolution of F" which has M as an 
open subset. Moreover, both n* and if* are injective for p = n - 2 .  

Proof By Theorem 2.5, KP=0  for O < p < n - 2 .  This means that t)f,=f2~ for 
O < p < n - 2 .  Hence n* and if* are injective for O ~ p < n - 2 .  
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We claim that n* is surjective for O < p < n - 3 .  Let coeF(M, f2~). Let co x be the 
element of F(V\{0}, f)P) induced by co/M\Tt-x(O) via ft. By Theorem 2.7, there 
exists co2 ~F(V, f2~) such that co2/V\{0} = col- Then n*(co2)= co and the surjectivity 
of 7z* is proved. Similarly if* is surjective. 

Now we continue our proof of Theorem B.. We prove that 

2n 2n 2 n - 1  

( - 1)' dim H'(A4, f2 p) = ~, ( - 1) ~ dim H'(~'o, f2~,o) + ~ ( - 1)' dim H~(M, f2 r') 
i = 0  i = 0  i = 1  

i.e. if(M) = ff@'o) + if(M), 0 < p < 2 n - 2  (2.6) 

as follows. By the Mayer Vietoris sequence, the rows of the following commutative 
diagram are exact. 

0 ,H~ p) ,H~ Y2~')G H~ I2 p) , H ~  P) --+ 

o ,H~ O ~) , H ~ 1 7 4 1 7 6  ~) ,H~ - ,  

H '  t "' ,HI (M,  f2P)Q HX(M\A, f2 p) , ( ~ , o ~ )  

, HX(~o, 0~)---~ H1 (Vo, ~ ' )  + H~(~'o\{0}, ~ ~ ) 

, H ' ( M \ A ,  0 p) -~ ... 

, HX (V\{O}, f) ')-+ ... 

, H2"-I(M,~2v)----~H2"-I(M, f2P)(~ HE"-X(M\A, QV) 

' H~"- ~ (V'o, 0") - - +  n ~ " -  '(Vo, ~") + H ~n- ' (?o \ {0} ,  ~") 

, H2~-~(M\A, K2 p) ) H2"(M,,.Q p) ,0 

,H2"-X(Vo\{0},~P) - ,H~n(?o,~ ") ,0. 

The higher terms in (2.7) are 0. Since ~ is biholomorphic on _~,I\A, (2.6) follows from 
Lemma 2.1 and Corollary 2.8. Put (2.6) into (2.3), we get 

2n--q q-- 1 

a = -  ~ i f ( M ) - 2  ~ f f (m)+a(m) .  
p = q  p = 0  

This completes the proof of Theorem B. Q.E.D. 

Proof of the Theorem A. Let V be a stein space with finitely many isolated 
hypersurface singularities {ql . . . . .  qp} such that M is a modification of V at 
{qx . . . . .  qp}, i.e. zc: M-~ V is a resolution of singularities of E Let U 1 . . . . .  Up be the 
Stein neighborhoods of qx . . . .  , q, respectively such that ~-x(U1) . . . . .  ~-X(Up) are 
holomorphically convex neighborhoods of A~, 1 <~___<p respectively. Then the 
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restriction mapping 

T: H'(M,~)---~H'(U n-l(U~),~) 

= | n ' (~ - I (G) ,  3) 

is an isomorphism for i>  l, by Lemma 3.1 of [13]. We may assume without loss of 
generality that M is a resolution of the singularity of V where V = N c~f-  1 (0) has 
the origin as its only singular point and f(z0, z 1 . . . . .  z,) is holomorphic in N _ C "+ 1, 
n > 4, a Stein neighborhood of (0, 0 . . . . .  0) with f(0, 0 . . . . .  0) = 0. As in the proof of 
Theorem B, we may further assume that f is a polynomial and ~ the com- 
pactification of V r = f - l ( t )  in p , + l  has the following properties. F'0 has 
(0, 0, . . . ,  0)~C "+1 as its only singularity, ~ is non-singular for small t =~ 0, and ~ is 
irreducible for all small t. By Serre duality, ZP(~)= ( -  I)"Z"-P(~) for 0 < p < n and 
small t=~0. Hence xP(Vo)=( - 1)"X"-P(~'o) by the proof of Theorem B. Now (2.6) 
implies 

xP(M)-zP(M)=( -1 )"[Z" -P(M)-z" -P(M)]  for 2 < p < n - 2  

=~ i f ( M ) =  ( -  I)"Z"-~(M) 

because xP(M)=( - I)"~"-P(M) by Serre duality. Q.E.D. 

w 3. Surface Singularities 

Let f(zo, . . . ,z,) be a holomorphic function defined near 0=(0,  .. . ,0) such that V 
= {(z o, ..., z,): f(zo, ..., z ,)=0} has an isolated singularity at 0. We choose V to be 
Stein. Let p be the Milnor number of the singularity at 0. The Milnor number, 
originally defined for polynomial f [18] is also defined for holomorphic f [2, 15, 
20], and is a topological invariant of the local embedding near 0 of V in C "+ 1 [17]. 

For  n--1, the plane curve case, Milnor [18] showed that 

~ t = 2 6 - ? + 1  (3.1) 

where ? is the number of irreducible components of V and ~5 is the "number"  of 
nodes and cusps at 0. In this section we would like to apply our method developed 
in Section 2 to study surface singularities. 

Theorem 3.1. Let f (x ,  y, z) be holomorphic in N, a Stein neighborhood of(O, O, O) with 
f(O, O, O) = O. Let V = {(x, y, z) ~N: f(x,  y, z) = 0} have (0, 0, 0) as its only singular point. 
Let # be the M ilnor number of(O, O, O) and rr be the signature of V'. Let rc : M--* V be a 
resolution of V and A = re- x (0, O, 0). Let zr(A) be the topological Euler characteristic 
of A and s be the number of irreducible components of A. Then 

tr < - s + 2 dim H 1 (M, d~) + dim H a (M, f21), (3.2) 

1 + # >__ Xr(A) + 2 dim H a (M, t~) - dim H a (M, f21), (3.3) 

and 
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1 +l~+a=)~T(A)-s+4dimHl(M,(P) ,  (3.4) 

where 0 1 is the sheaf of germs of holomorphic 1-forms on M. 

Remark. (3.3) was obtained in [1]. The ingredient of the proof  of Laufer's formula 
[14] is the Riemann-Roch Theorem. The ingredient of the proof  of Durfee's 
formula (Theorem 1.5 of [4]) is the Hirzebruch index Theorem. We prove Theorem 
3.1 without using the Riemann-Roch Theorem or Hirzebruch index Theorem. If we 
combine (3.4) and Durfee's formula for signature (Theorem 1.5 of [4]), we obtain 
Laufer's formula for # in [14]. Since the proof of Durfee's formula does not depend 
on the Riemann-Roch Theorem, we derive Laufer's formula without using the 
Riemann-Roch Theorem. 

Proof. We will use the notations in the proof of Theorem B. By (2.5), we have 

a = Z 1 (Vo) + 2 Z~ (~'o) - )~1 (.~) _ 2)co (~rO) + a(M). (3.5) 

Because of (2.6), Corollary 2.8 and Lemma 2.1, (3.5) becomes 

= - 2)~~ (M) - ;~ 1 (M) - dim coker rt ~' - dim coker g~* + ~r(M) (3.6) 

where 

rt*: F(Vo, f21)--+ F(M,Q 1) 

and 
~i*: r(~'o, 01) ~ r (M,  O1). 

Let A = Q) Ai, 1 < i < s be the decomposition of A into irreducible components. By 
Grauert-Mumford criterion, the intersection matrix [Ai .Aj]  is negative definite. 
Hence a ( M)=  - s .  So the inequality (3.2) follows from (3.6). Recall that in [1], we 
prove that 

1 + # = - 2)~~ + Z 1 (M) + dim coker n* + dim coker n~* + Zr(A). (3.6)' 

By Combining (3.6) and (3.6)', we get (3.4). Q.E.D. 

Theorem 3.2. Let the notations be as Theorem 3.1. Let K be the canonical divisor on 
M. Then 

o" = - K 2 - s - 8 dim H 1 (M, d)). (3.7) 

Remark. By combining (3.4) and (3.7), we obtain Durfee's formula for signature. 
Since (3.7) is just a simple application of Noether's formula and Hirzebruch index 
formula, the Durfee's method of singature defect can be completely avoided. 

Proof We will use the notations in the proof of Theorem B. By (2.1), 

a = a v  - a i ~ -  s. (3.8) 

dz ^ dx . . . . .  
dx ^ dy dy a dz = ls a non-zero nmomorpnlc 2-form on Vt, t + 0, and 

f~ f~ f ,  
on V\{0}. Let K~,~ be the part of the divisor of co on ~ which is supported on ~ \ V  t, 
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for t small .  K|  c K ~ ,  t is i n d e p e n d e n t  o f  t s ince the  fami ly  {~} is d i f fe ren t iab ly  
t r iv ia l  away  f rom ( 0 , 0 , 0 ) ~ C  3. Le t  Ko~.Ko~ 
Koo,t" Ko~,t. N o e t h e r ' s  f o r m u l a  says 

z~ = ~2(K. K + Ko~" Ko~ + ZT(/~)), 

zO(~ =~J-~(K~'Koo+ZT(~)), t#O. 

H i r z e b r u c h  i ndex  t h e o r e m  says 

avt=~(Ko~.Ko~-2ZT(~)), t # 0 ,  

c r ~ = � 8 9  K + K ~ .  Koo - 2zT(M))- 

(3.7) fol lows f rom (3.8), (3.9), (3.10), (3.11), (3.12) a n d  (2.6). 

d e n o t e  this c o n s t a n t  va lue  for 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

Q.E.D.  
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