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VARIOUS NUMERICAL INVARIANTS 
FOR ISOLATED SINGULARITIES 

By STEPHEN S.-T. YAu* 

1. Introduction. In the theory of isolated singularities, one always 
wants to find invariants associated to the isolated singularities. Hopefully 
with enough invariants found, one can distinguish between isolated singu- 
larities. However, not many invariants are known. 

Definition 0. Let V be a Stein analytic space with x as its only singu- 
lar point. Let 7r: M -- V be a resolution of the singularity of V. We shall 
denote dim H1(M, 9), 1 < i < n - 1 by h(i), and dim Hq(M, UP) for 
1 ? p < n, 1 < q < n by hP,q(M). 

So far as the classification problem is concerned, h (n-i) is one of the 
most important invariants. In this paper, we shall introduce a bunch of in- 
variants (cf. Definition 2.6, Definition 4.1, and Definition 5.1) which are 
naturally attached to isolated singularities. These invariants are used to 
characterize the different notions of sheaves of germs of holomorphic dif- 
ferential forms on analytic spaces. Various formulae which relate all these 
invariants are proved. We also show how to calculate these invariants 
explicitly. 

Our paper is organized as follows. In section 2 we discuss the 
relationship between three different kinds of sheaves of germs of holomor- 
phic forms introduced by Grauert-Grothendieck, Noether and Ferrari re- 
spectively, and the dualizing sheaf on a complex analytic space which ad- 
mits only isolated singularities. We remark that the torsion sheaf of the 
sheaf of germs of holomorphic p-forms in the sense of Grauert-Grothen- 
dieck was studied by Brieskorn [9], Greuel [48], Kantor [19], Suzuki [38], 
Vetter [39] and the author [43]. 

In section 3 we relate the invariant g(n-l1) of a hypersurface isolated 
singularity with analytic invariants and topological invariants of any reso- 
lution of the singularity. The Noether's formula for the rank two bundle 
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01 on the strongly pseudo-convex 2-dimensional manifold is proved. We 
give an example to show how to use this formula. 

In section 4 we prove that for the 2-dimensional strongly pseudo- 
convex manifold M, dim H1(M, ?1) 2 b2 where b2 is the second betti 
number of M. The equality holds for rational singularities (cf. [51] and 
[41]) and simple elliptic singularities (Theorem 4.6 below). Theorem 3.2 
actually gives the general formula for dim H 1(M, ?1) in case the singularity 
is hyper-surface. We study the invariants h(n-i) and s(8-l) (cf. Definition 
4.1) for negative line bundles over compact complex manifolds. We would 
like to mention that Wahl and Pinkham kindly informed us that they have 
proved that the holomorphic 1-forms can extend across exceptional set, 
(i.e., s(l) = 0) for 2-dimensional rational singularities (cf. [41] and [29]). 
The same phenomenon occurs for simple elliptic singularities (Corollary 
4.9). We give various formulae for h (ni-) and S(n-1) which make them 
computable explicitly at least for isolated singularities with C*-action. In 
Corollary 4.2, we prove that rational singularities of arbitrary dimension 
with C*-action have 5(8-l) = 0. 

In section 5 we prove the universal formula for curve singularities 
which is a generalization of Milnor's formula for plane curve singularities 
to arbitrary curve singularities and a Noether's formula for arbitrary 
strongly pseudo-convex manifolds. In the forthcoming paper, we will 
describe hP,q(M) for strongly pseudo-convex manifolds in more detail. 

We gratefully acknowledge the constant encouragement and interest 
of Professor Henry Laufer in this research. We would like to thank Profes- 
sors' Bott, Griffiths, Hironaka, Mumford, and Siu for our privilege to talk 
with them, especially to Professors Hironaka and Siu for spending so 
much time listening to us, giving us advice, and their insights on the sub- 
ject. I would also like to thank Professor Greuel and the others for helpful 
comments and useful suggestions. Finally, we thank Professor Wahl and 
Professor Pinkham for correspondence. 

2. Characterization of various sheaves of germs of holomorphic forms. 
In this section, we shall study the relationship between the sheaves of germs 
of holomorphic forms introduced by Grauert-Grothendieck, Noether and 
Ferrari. Let us first recall some lemmas in [11]. Let Y be an analytic set in 
an open set U in Cm. Let y?= Y, y1 = Ysing = set of singular points of 
y y2 = Ylng etc. Following Ferrari, we make the following definitions 

(1) 3CP = 
{w E ?pu:W/(Y\Ysing) 

= 0}. 
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(2) Let 3Cj' be the subsheaf of Qj consisting of the germs of differ- 
ential forms X satisfying w/Y,g = 0 for all v ? 0 where Y,eg is the regular 
part of Y . 

(3) Let 3C2 be the subsheaf of Q' consisting of the germs of holomor- 
phic forms w, for which, for any complex manifold W and any holomor- 
phic map so: W -- U, such that so(W) C Y, one has so*(w) = 0; where 
( *: O' -- ?J' is the induced map. 

LEMMA 2.1. (see [11]). 3Cf = 3C2 = 3CP" 

Definition 2.2. L 
where 4 is the ideal of Y in Ou. Let 7r:M -- Y be a resolution of singu- 
larities of Y. Then Noether sheaf of germs of holomorphic p-forms on 
Y, UP: = R O7r* . Grauert-Grothendieck sheaf of germs of holomorphic 
p-forms on OPy = ?Pu/3CP. Ferrari sheaf of germs of holomorphic p-forms 
on Y, OP: = UP /3CP. 

LEMMA 2.3. There are two short exact sequences 

(2.1) 0-KP UPy 4P-0 

(2.2) ? QP Up HP 0 

where both HP and KP are coherent sheaves supported on the singular 
points of Y. 

Proof. It is easy. 
The following two lemmas were proved before (c.f. [11], [43]). 

LEMMA 2.4. Let I' be a coherent analytic sheaf on Y. Let s be a sec- 
tion of I' over X. If supp s = X is a nowhere dense proper subvariety of Y 
then s is a section of the torsion subsheaf of iY. 

LEmMA 2.5. Let Y be a reduced complex analytic space. Let KP be 
defined as in (2.1). Then KP = torsion subsheaf of Qpy. 

In response to a problem raised by Serre [34, p. 373-374], Siu [36] 
had the following beautiful solution. Before stating it, let us recall some 
notations: If I' is a coherent analytic sheaf on a complex analytic space X, 
then Sk (ff) denotes the analytic subvariety {x E X: codh Fx < k}. If D is 
an open subset of X, then Sk (ff/D) denotes the topological closure of 
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Sk (3:/D) in X. If V is an analytic subvariety of X, then JC v I) denotes the 
sheaf defined by the presheaf U - Hv(U, fl, where Hkv(U, i) is the 
k-dimensional cohomology group of U with coefficients in 9: and supports 
in V. 

THEOREM (SIU). Suppose V is an analytic subvariety of a complex 
analytic space (X, (9), q is a nonnegative integer, and I' is a coherent ana- 

lytic sheaf on X. Let 0 :X\V -* X be the inclusion map. Then the following 
three statements are equivalent: 

(i) 0o(5z/X\V), ..., 0q(5f/X\V) (or equivalently 3CI(f),.. 
CV+(9)) are coherent on X. 

(ii) For every x E V, 0o(9I/X\V)x, ..., Oq(I:/X\V)x (or equivalently 
SC V(9:)x, . ..., SC+ l(9)x) are finitely generated over O9x. 

(iii) dim V n Sk+q+1 (I:/X\V) < k for every k > 0 

where Oq(ff) is the q-th direct image of I' under 0. 
Let us introduce one more notion of sheaf of germs of differential 

forms on complex space. Suppose Y is a complex analytic space of dimen- 
sion n with x as its only singularity. Let 0: Y\{x} Y be the inclusion 
map. Then the 0-th direct image sheaf 0*Q Y\{X}= y is coherent by Siu's 
Theorem. It is clear that we have an inclusion Qy -- y. Define J1 by the 
following exact sequence 

(2.3) - i = i 

Remark. In case Y is a normal complex space, then the dualizing 
sheaf wy of Grothendieck is actually the sheaf r n, where n is the dimen- 
sion of Y. 

From now on we assume that all singularities whenever they exist are 
isolated. 

Definition 2.6. Let Y be a complex analytic space with x E Y as an 
isolated singularity. Let Hi, Ki, and J1 be defined as in (2.1), (2.2), and 
(2.3). Then the invariants g(i), m(i), and S(i) at x are defined to be dim(H1)X 
dim(K1)x, and dim(J1)x respectively. (See Definition 4.1 for an alterna- 
tive definition of 5(i).) 

The following Lemma is obvious. 
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LEMMA 2.7. Let n = dimension of Y at x and N = embedding di- 
mension of Y at x. Then g(i) = O for i > n and m(i) = O for i = 0 and 
i > N. Moreover, if Y is a Stein analytic space with x as its only singular 
point, let 7r:M -- Y be a resolution of the singularity, then 

g(i) = dim r(M, Ql)/.*r (Y Qi) 

and 

m = dim Ker (r*:F(Y, QY) - rF(M, QY)). 

For normal singularities, g(O) = 0. If x is a curve singularity, then g(O) co- 
incides with the analytic invariant 6 introduced by Serre. 

Remark. Let us recall the definition of 6. Let Oy,x be the integral 
closure of 0 Y,x, the local ring at x. Then 6 = dim(O k,x / y,yx). It turns out 
that 6 is exactly the correction term which appears in the general Plucker's 
formula for singular curve (p. 73-74, [34]). 

THEOREM 2.8. Let x E V C Cn+1 be an isolated hypersurface singu- 
larity, given by f = 0. Write 

: v Xv=(v* 

for the canonical map; then there is a canonical exact sequence of 0-modules 

0 -- ker a -- N 4N -- coker a -- 0 

where N Cn+ C/+li A df. 
In particular 

coker a = N/fN = v,x i.e., g(n) + h(n-1)- =T 

Here h(n- ) = dim Hn'(M, 0) where 7r:M -- V is a resolution of the 
singularity of V, and - = dim C IJzi]]/(f, (df/dzi)) assuming that x is the 
origin. 

Proof. Consider the following exact commutative diagram. 
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0 

n+1 n (O,Adf) n+1 
QCn+1 C r C -Cn+I - N - O 

(Adf,f) f ' f 4 

n-1 Adf n Adf n+1 
QCn+I QCn+I Cn+I - N 0 

if ,Res((fj ) , 

Un ora WV v X 

0 

The first vertical column is the definition of 

Uv = Cn+ 1 /Cn+1I Adf + Cn+ 1. 

The second vertical column is the Poincare residue mapping 

Res: Un+l(V) 0 O9v Xv. 

The middle row is the Koszul complex of df-this is exact until the last 
term because (df/dzi) E m C e form a regular sequence. The theorem 
can now be read off the diagram using the snake lemma and the fact that 
dim wVhx*wM = dim R n-1l*0M. (cf. Theorem A of [47]). 

The following Theorem gives a characterization of four different 
kinds of sheaves of germs of holomorphic p-forms on a complex hyper- 
surface. 

THEOREM 2.9. Let f (zo, z1, ..., zn) be holomorphic in N, a Stein 
neighborhood of the origin in Cn+1 with f (0, 0, ..., 0) = 0. Let V = 

{(ZO9 Zl ... Zn) E N:f(zo, z1l . .. Zn) = 0} has the origin as its only 
singular point. Let i:M - V be a resolution of the singularity of V. Let 
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and h(n-)= dim H-1 (M, 0). Then 

(a) = = = vfor0 < i < n - 2and n-1 = 1 C 
n-1 cn+l 

~v c V 
(b) g(n) = 7r-h(n- ) and m(n) = dim C [[zo, z 1, Zn ]] (f, (aflaZO), 

dflazl ), . . *, (af1aZn ))- 
0n+1 _n+1 n+l n+1 (c) Q =1 0 = UV = UV , + is supported on the origin and 

m(n+1) =dimCflzo,Zl, . . .,Znfl/(f, (aflaZO), ., (af1aZn)). 

Remark 2.10. (a) Qv ?0Q(? < i < n- 1) can be found in ([11], 
Proposition 2.1; [43], Theorem 2.5 and Theorem 2.7. See also [48], 
Proposition 1.11(i)) for the relative case 

(b) M(n) = dimc C[zo, z1, ..., zn]/(f, (df/dzo) ..., (df/dzn)) is 
due to Greuel ([48], Proposition 1.11(iii)). 

3. Computation for the invariant g(n-l) and Noether's formula for 
rank 2 bundle on strongly pseudo-convex 2-dhnensional manifold. For 
the case of n-dimensional isolated hypersurface singularities, we com- 
puted all the m(i) and g(i) except g(n-1) in the previous section. Now we 
would like to investigate the more subtle invariant g(n -). Then we restrict 
ourself to surface singularities and give a Noether formula for rank 2 
bundle Q1. 

The following lemma which was stated in p. 84 of [43] has some mis- 
prints in the last line of that lemma although it does not affect any result 
in that paper. For the sake of convenience to the reader, we correct the 
misprints here. 

LEMMA 3.1. Let 

? * A1-- A2 GA --A3- A4 . A' (A As'-A6 

7rl t2 t2 7 31 741 5g 5 7 61 

O * B, B2 ( B' 11 B -B -Bs Bs'-B 

- -A7-> A8 (A -8'-A9- *- . 
t7 1 8 1 8' 9 

- B7 B8 B -B9 *- . ------ 
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9P3n-2 I fl '3n- I ~'3n ~ 03n+ I 
*A3n-2 A3n-1 ( A3n-1 A3n -A3n+1 

P3n-2 | | 3n-l | 3n + 3n+l 
- ~~~Bn-1 G0B 3+ 0 * 3n-2 B_ (3 B3n-1 b 3n --3+ 

be a commutative diagram with exact rows. Suppose 'ir-1, ir3i, 1 < i < n 
are isomorphism and all the vector spaces are finite dimensional except 
possibly A , B , A'1, A31, B'1, B3, 1 < i < n. Suppose also that 
Bi+2 = Ofor 1 ' i c n - 1. Then 

n n-1 

, (-l)1 dimB3i+1 + S (-l)1 dim A'+2 
i=0 

i1+ = + 

n 
= S (_1)i dimA3i+1 + dim ker 7r' - dim coker 7r' 

i=0 

The following proposition is a consequence of the Mayer-Vietoris se- 
quence [1, p. 236] and the above Lemma. 

PROPOSITION 3.2. Let V c pm be a projective variety of dimension 
n with x as its only singularity. Let i: M -_ V be a resolution of the singu- 
larity of V. Let 

n 
XP (M)- E (- l) dim HP (M, UP) 

q =O 

and 
n 

p(V)= S (-1)q dimHq(V, UP). 
q =O 

Then 

n-1 

XP(M)x-P(V) = S (-1)1dimH1(M,QP) - m(P) + g(P) 

where M is the strictly pseudoconvex neighborhood of 7r-1(x). 
If x is a hypersurface singularity, then 

n-1 

xP(M) = xP(V) + S (-l)idim H(M, UP) for 0 _ p _ n - 2 
i=l1 
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and 

n-i 

xn1 (M) = Xn-l(V) + S (-l) dimH1(M, fn-1) + g(n-1). 

Remark. One can deduce Proposition 3.2 also from Leray spectral 
sequence. 

THEOREM 3.3. Let f (zo, z1, .. ., Zn) be holomorphic in N C Cn+1, 

n 2 2, a Stein neighborhood of (0, 0, ..., 0) with f (0, 0, . . ., 0) = 0. Let 
V = N f f' (0) have (0, 0, . . ., 0) as its only singular point. Let it be the 
Milnor number of V at the origin. Let Xi M -- V be a resolution of V with 
A as the exceptional set in M. Then 

n-1 
(3.1) g(n-l) = L+(-l)n+(-l)n+lxT(A) + E (_j)n+pX(Up)2hn- 

p=1 

where 

n 

X (UP) = 1 -)i dim H'(M, UP), 
i=l1 

XT(A) = topological Euler characteristic of the exceptional set A 

h(n-1) = dimHn-l(M, (). 

Proof. The proof is similar to those given in [43]. 
In order to make the readers feel more comfortable, let us restrict 

ourself to two dimensional singularities for a moment. Let us recall the 
Riemann-Roch formula for rank 2 bundle 01 over a compact Kahler sur- 
face X. It says that 

dimH?(X, Q1) - dimH'(X, Q1) + dimH2(X 61) = 1 2 - 5C2) 

where c1 and c2 are first and second Chern class of X respectively. In the 
2 formula (3.2) below, XT(A) and K *K should be treated as c2 and c 1 re- 

spectively. The change of the sign is expected by our definition of X(M, ? 1). 

THEOREM 3.4. Let f (x, y, z) be holomorphic in N, a Stein neighbor- 
hood of (0, 0, 0) with f (0, 0, 0) = 0.Let V= {(x,y, z) E N:f (x,y, z) = 0} 
has (0, 0, 0) as its only singular point. Let 



1072 STEPHEN S.-T. YAU 

,u-dimC Ixx,yz]/( z f df df ) 

and 

i-dim CJfx, y,z]]/(f af af a3f 
7 aimClIx,YSzl/(MS dx ' y' dz 

Let 7r:M -- Vbe a resolution of V and A = iG1(0, 0, 0). Then 

(3.2) x(M, ? 1) = dimr(M\A, ? ')/r(M, ? 1) + dim H1(M, Q') 

= I- (it + 1) + XT(A) + 2 dimH'(M, 0) 

= -6-(KK-5XT(A)) + - (1 + it) 

where XT(A) is the topological Euler characteristic of A and K is the 
canonical divisor on M. 

Proof. We apply (3.1) for n = 2 and get 

(3.3) g(l) = i + 1 - XT(A) - x(1) -2h(l) 

dim]P(M, gl)/7r*r(V, 01) 

t ,+ 1 -XT(A) + dimH'(M, '1) 

- 2dimH'(M, 0). 

By the exact sequence 

0 r(M, gl)/7r*r(V, 21) r(M\A, gl)/7r*r(V, 01) 

r(M\A, ?1)/r(M, Q1) -O 0 

we have 

(3.4) dim r(M, gl)/7r*r(V, Q1) - dimr(M\A, gl)/7r*r(V, '1) 

- dim rM\A, 01)/r(M, a1). 
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The following diagram is commutative with exact rows. 

0 0 F(V\{0}, ?2') r- F(M\A, ?2') * 0 

0 - F(V, K') IF (V, ?21) O r*F(V, ?2) 0 

where K' is defined as in Lemma 2.3. By snake lemma 

(3.5) dimr(V\{0}, Q1)/F(V, ?1) = dim F(M\A, ol)7r*r(V, ?2). 

Look at the local cohomology exact sequence 

0 -~tH{0}(V, ?21) H?(V, ?21) H?(V\{0}, ?21) 

H4O}(V, ?21) H1(V, ?21) 

H1(V, ?1) = 0 because Vis Stein. Hence 

(3.6) dim H?(V\ {0}, ?1 )/H0(V, ?21) = dimHjo}(V, ?21) 

= dim Ext OC3 0 (Uv,o, 0C3,o). 

In p. 91, (2.4) of [43], we gave an explicit resolution of Qv,o as follows. 

0 ~i1 0 TO0 O2 QC3 QC3 0 ?2C3 -+ QC3 ?? 2ro Q0 

is exact at 0 in C3 where 

Tl(a) = (df A a, -fa) a E QC3 

and 

ro(a, f)=fa + df A (a, f) E Qc3 G QC3 

are 0-linear. It follows easily that 

dimExt2C3,0(1v,o, Oc3,o)= dimC[[x,y,zII/ af df /)= T-f 0 VI a~~~~~x ay ' z 
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Therefore from (3.4), (3.5) and (3.6) we have 

(3.7) dim r(M, gl)/7r*r(V, ?1) = r - dim r(M\A, 2 ')/r(M, ?21). 

Put (3.7) into (3.3), 

(3.8) dimr(M\A, 01)r(M, Q1) + dimH1(M, Q1) 

=7 - (it + 1) + XT(A) + 2dimH1(M, 0) 

= -(it + 1) + XT(A)- 1 (K 2 + XT(A)) + 1 (1 + ,u) (by (3) of [22]) 
1 2 5~~~~~~~~~~ 

=- 6(K2-5XT(A)) +?T-6 (1 + i) Q.E.D. 

We observe that X(M, ?1) is not a birational invariant. So it is a good 
biholomorphic invariant of strongly pseudo-convex 2-dimensional mani- 
fold. The right-hand side of (3.2) is explicitly computable. Let us give one 
example. Before we do that, let us make a corollary first. 

COROLLARY 3.5. Let g(l), ,u, XT(A), and K be as in Theorem 3.4. 
Then 

(3.9) g()= 5 (1 + i)- 5 XT(A) + 1 K2 + dimH1(M, 
?1). 

Proof. This is an easy consequence of (3.3) and (3) of [22]. 

Example 3.5. Let Vbe the locus in C3 of Z2 = y3 + x9+61. Then the 
dual weighted graph for the exceptional set of the minimal resolution M is 

-2 

f >*-0 

-2 -2 -3 -2 -2 

-2 
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This is a weakly elliptic singularity and the length of the elliptic sequence 
[45] is equal to f + 1. It can be calculated that it = 16 + 12f. By Theo- 
rem 3.7 of [45] one calculates easily that K2 = -(E + 1). XT(A) = f + 5. 
Therefore 

X(M' 0) = 12 (K2 + XT(A)) + 1 (1 +,) 

12- 12 

- 121 (-e-1 +f +6)+ 1- (1 + 16+ 12f)=f+ 1 

and 

X(M, Q1) =-1 (K2 -5XT(A)) + r - 6 (1 + it) 66 

_ 15 
=- 6(-f-1 = 5e-30) + 16 + 12e-5 (1 + 16 + 12Q) 

=3e + 7. 

4. Some computations for s (n -1) , h (n- 1) and hPq (M). 

Definition 4.1. Let M be a strongly pseudo-convex manifold of di- 
mension n 2 2. Let A be the maximal compact analytic set in M. Suppose 
that A is connected i.e. M can be blown down to a Stein space V with x as 
its only singularity. We define s(i), 0 c i < n, of the singularity x to be 
dim F(M\A, Q2/ r(M, QY). Recall the definition of hP,q(M) and h(i) in 
section 1. 

THEoREM4.2([14a], [36a] and [47]). hlq = Ohfor1 < q < n; hpn 0= 

for0 < p < n;s(n)=h(n- ) 

PROPOSITION 4.3. Let M, V, A, x, s(i) and h(i) be as above. Then s(i) 
and h(i) are independent of the choice of M in the following sense. If U is a 
strongly pseudo-convex neighborhood of the exceptional set A in M, then 
s(l)(M) = s(i)(U) and h(i)(M) = h(i)(U)for 1 c i s n - 1 where s(i)(M) = 
dim r(M\A, Q9)/r(M, Q?) and s(i)(U) - dim r(U\A, Q9/Fr(U, Qi). 

Moreover if V1 is any Stein neighborhood of x in V and M1 is any reso- 
lution of V1, then s(i)(M) = s(i)(Ml) and h(i)(M) = h(i)(Ml), 1 c i c 
n - 1. In any case, s(O) = 0. 
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Remark. Proposition 4.3 says that s(i)(0 < i < n) and h(i)(1 < i < 
n - 1) are actually a numerical invariants associated to the singularity x. 
Actually from the proof below, it is easy to see that s(i) is finite for 1 c i c n. 

Proof of Proposition 4.3. Obviously the sequence 

0 - 
0 --+0 --+0 0 --+ 0 

? v Qv Qv/v? 

is exact. Qv/Qv is coherent and supported on {x}. Since F(V, Q) = 

F(M, QY) and r(V, Qv) = F(M\A, QY), our claim follows from the fact 
that H'(V, Uv) = 0 (Cartan Theorem B). 

Recall that in [28], Narasimhan proved that given a finitely generated 
abelian group G and integers k 2 1, n 2 k + 3, there is a Runge domain 
D in Cn with Hk(D, Z) = G. However for the strongly pseudo-convex 
2-dimensional manifold we have the following. 

THEOREM 4.4. Let M be a two dimensional strongly pseudo-convex 
manifold in which the exceptional set may admit arbitrary singularities. 
Then h1'l(M) = dim H1(M, ?1') 2 b2 where b2 is the second betti number 
of the tubular neighborhood of the exceptional set A of M. 

LEMMA 4.5. Let Be be an open ball in C2 with radius E. Let r: M -B 

be the quadratic transformation at the origin. Then H'(M, ?1) = C. 

Proof. Easy. 

Proof of Theorem 4.4. We are going to prove that both h 1'(M) and 
b2 will increase by one if we apply a quadratic transformation p at x E A. 
The statement for b2 is obvious. By the Mayer-Vietoris sequence [1, p. 236] 
argument or Leray spectral sequence, 

dimH1(M, (1) = dimH1(M, Q1) + dimH1(pV1(D), Q ) 

where D is a Stein open neighborhood of x 

> dim H1(M, Q1) = dim H1(M, Q1) + 1 byLemma4.5. 

This proves our claim. 
By applying finite number of quadratic transformations, we may 

assume that A has normal crossings. We only need to prove the theorem in 
this case. Now one can check that the following sequence is exact 



INVARIANTS FOR ISOLATED SINGULARITIES 1077 

__1 b2 
0-O ?1(logA)(-A) QM 01 0. 

Hence 

H1(M, QO1) -0 H'(A1, QA,) -- H2(M, (logA)(-A)) 

is exact. By Siu theorem, H2(M, Q1 (log A)(-A)) = 0. It follows that 

b2 

h 1 l(M) >- dim H1(A1, 2,Q) 

= b2 sinceAi's are nonsingular. Q.E.D. 

The following theorem is the first attempt to compute he1 l)(M). We 
shall give a more general formula later. 

THEOREM 4.6. Let M be a two dimensional strongly pseudo-convex 
manifold M with a nonsingular Riemann surface A of genus g as its maxi- 
mal compact analytic set. Then 

hl"'(M) = dimH'(M, '1) 

= dim F(M, QM 0 (9f0A(nOA)) 

where 

no + 1 = max{L 
- 
2g + 1,2} 

If ((2 - 2g)/(A -A)) < 1,then h,1'(M) = dim H'(M, Q1') = 1. In par- 
ticular if A is a rational curve or an elliptic curve, then h1'1(M) = 1. 

Before we prove Theorem 4.6, let us first recall Wahl's lemma. 

LEMMA 4.7 (p. 352, [40a]). Let I' be any local free sheaf on M. 
1 

Then HA (M, 5) = lipZH?(M, 5f 0 Oz(Z)) where the limit is taken over 

effective divisors supported on A. 

Proof of Theorem 4.6. Recall the following exact sequence 

(4.1) 0 9OA(-A) -Q O OA ?22 QA ? 
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Tensor (4.1) with 09(nA), one therefore has an exact sequence 

(4.2) 0 -9 A((n - 1)A) -QM A(A ) QA (nA) --O. 

Apply the long cohomology exact sequence, we get that the sequence 

0 -? H?(M, OAn(( - 1)A)) -- H?(M, Q 1 
H0(M, (A(nA)) 

is exact. Therefore 

(4.3) H?(M, QM (9 A(nA)) = 0 for n 2 max {[A Agj + 1,2 

since C1((A((fn - 1)A)) < 0 and c 1 (QA(nA)) < 0 by hypothesis. 
The sequence 

(4.4) 0 -- 0(-A)/0(-(n + 1)A) -(9O(n+1)A OA -? 0 

is exact. Tensor (4.4) with (9((n + 1)A), we get exact sequence 

(4.5) 0?- (9nAM) (9(n+1)A((n + 1)A)- OA((n + 1)A) -O0 

Tensor (4.5) with Om, we obtain exact sequence 

(4.6) 0 OM 0 OnlA(nA) QM 0m (0(n+l)A((n + 1)A) 

1 
OM (A((n + 1)A) -0 

By (4.3) and (4.6), 

H?(M, 01 (9 /9nA(nA))- H(M, QM 0 0(n +1)A((n + 1)A). 

Therefore by Lemma 4.7 

(4.7) dim H'(M, QM) = dim HA (M, UMl) 

= dim lim H?(M, QM 0 OnA (nA)) 
W'A 

(by Serre duality and [1]). 

= dim H?(M, QM 0 (90A(noA)). 
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If ((2 - 2g)/(A A )) < 1, then n0 = 1. 
Set n = 1 in (4.2), we have 

(4.8) 0 OA Om 0 OA(A) A(A) ?0 

Since c1(QA(A)) = 2g - 2 + A -A which is less than zero by our assump- 
tion ((2 - 2g)/(A -A)) < 1, hence H?(M, QOA(A)) = 0. By (4.7) and (4.8), 
we have 

h"1'(M) = dim H?(M, m 0 OAA(A)) 

= dim H?(M, OA) = 1. Q.E.D. 

We come to study s(l) for surface singularities which are obtained by 
blowing down the zero section of a negative line bundle, e.g. cone singu- 
larities. Proposition 4.8 was also proved independently by Pinkham [51]. 

PROPOSITION 4.8. Let Nbe a negative line bundle over a nonsingular 
compact Riemann surface A. Then 

00 

(4.9) F(N\A, Q1) = F(N, Q1) IF F(A, KANn) 
n=1 

S(1) = dim F(N\A, Q')/F(N, Q1) 

{0 if gc1 

- no 

E dimF(A,KANn) if g 2 2 
n=1 

where g is the genus of A, nO is the least integer > ((2 - 2g)/(A -A)) and 
KA is the canonical line bundle of A. 

Remark. We identify the zero section of N with the compact 
Riemann surface A here. It should be clear that on the left-hand side of 
(4.9), N represents the total space of the line bundle which corresponds to 
M in our previous notation, while on the right-hand side, N means the line 
bundle itself. 

Proof of Proposition 4.8. Choose an open cover CU of A which con- 
sists of coordinate charts (U., Za) of A such that N/Ua is trivial. Let w. 
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be the fiber coordinate of N/Ua. Let us denote f. and gO be the coordi- 
nate transition function for the manifold A and the transition function for 
the line bundle N respectively, i.e., 

(4.10) za = fa((z) and w,- = gowo 

(Za, W.) is a coordinate patch on N. A one form on N is of the form 

{I ,(za, wa) dz a + ra(za, wa)dwa}. Under change of coordinate, we have 

(4.11) df + d a gog 
dzfl dzfl Wc 

(4.12) = nagao 

Take a Laurent series expansion of {In } along the fiber. 

00 00 

n _=n-00 

Therefore (4.12) implies 

> {m1oe } E s-n-1 

Since c (N -n-1) = (-n - 1)c(N) and c(N) is negative, where c(N) de- 
notes the Chern class of the bundle N we have 

n c -2 => Ina,n I = 0 

n - 1 > {Ia,m } E F(A, 9A) 

i.e. {oj,-} = a which is a constant function on A 

(4.13) I nla} = + w n- , n( e)t)} 

Take the Laurent series expansion of tOg along the fiber 

00 00 

= to (Z,)Wn, -(Z)W 
n=o n=o00 
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From (4.11) we have 

48n(Z0)9gOe0 = f.,n(z ) dfza if n c -1 

= ~~0(z~)df d log g,,43 
40l,O(Zo) = t (Z?) da + a - if n 0 O 

(4.14) l4an I Er (A, KAN -n) n c -1 

(4.15) {The 1-cocycleNa)i dz} is actually a 1-coboundary, 

The class {(1/2iri)((d log g,0)/dz0)dz0 } represents the Chern class of 
N. Since the Chern class of N is negative, the cohomology class of 
{a *(1/2iri)((d log g,0)/dzfl)dz0} cannot be zero unless a = 0. By (4.15) 
we conclude that a = 0, i.e. qOg is actually holomorphic. On the other 
hand, if c(KAN-n) = 2g - nA -A < 0, then J'(A, KAN-n) = 0. There- 
fore our theorem follows easily from (4.14). Q. E.D. 

We remark that the above computation can be generalized to com- 
pact complex manifolds of higher dimension. Recall that a surface singu- 
larity (V, x) is said to be simple elliptic if the exceptional set ir-l(x) in the 
minimal resolution r: M -- V is a nonsingular elliptic curve. 

The following corollary tells us how to compute the invariant s'l) for 
simple elliptic singularities. 

COROLLARY 4.9. Let M be a two dimensional strongly pseudo- 
convex manifold M with a nonsingular elliptic curve A as its maximal 
compact analytic set. Then s(1) = dim r(M\A, Q1)/r(M, Q') = 0. 

Proof. By Grauert [12], a neighborhood of A in M is biholomorphic 
to a neighborhood of the zero set of the normal bundle of A. So by Propo- 
sition 3.4, Lemma 4.4 and Theorem 4.8, our corollary follows easily. 

The following proposition is an easy consequence of [12]. 

PROPOSITION 4.10. Let N be a negative line bundle over a non- 
singular compact Riemann surface A. Then 

0 if g-0 

(4.16) h(l) = dimH'(N, (9) = 1 if g 1 
nO 
E dim IF(A, KANn +1) if g 2 2 

n=1 
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where g is the genus of A, nO is the least integer 2 ((2 - 2g)/A -A) - 1 
and KA is the canonical line bundle of A. 

There are similar formula for higher dimensional singularities. The 
formula below is well-known. It is also a direct consequence of Leray spec- 
tral sequence. 

COROLLARY 4.11. Let N be a negative line bundle over a (n - 1)- 
dimensional compact complex manifold A (i.e. the zero section of N can 
be blown down.) Then 

(4.18) h(n- ) = dimH n-1(N, 0) = S dim F(A,KAN-'_ ) 
i=-00 

where KA is the canonical bundle on A. 

COROLLARY 4.12. Let f (x, y, z) be a homogeneous polynomial which 
defines a nonsingular curve A of genus g in CP2. Let M be the dual of the 
hyperplane bundle restricted to A. M is a resolution of the variety V de- 
fined by {f = 0} in C3. Let It, be the Milnor number of the cone singu- 
larity. Then 

(4.19) h( l)(M) =-12( 2 -1) (A*A)+y1-1 g 12 

() _12 A -A 2 )( )12 - 6 g +12 

(4.20) s~'~h~'~-g 1 (2g -2 \2 1 

and 

(4.21) () 11 1 (2g 2 (A A) + g + 

Proof. By (3.4) 

(4.22) S(') + h('1)(M) = (r - At) - 1 + XT(A) + 2h(') 

= 1 - 2g + 2h(1) (f is homogeneous) 

1 h1)(M) = 1 - 2g + h(l) + h() -s(l). 

Put (4.9), (4.16) and (3) of [22] in (4.22), we get (4.19). Put (4.19) in (4.22) 
we obtain (4.20). (4.21) follows from Theorem 3.3. Q.E.D. 
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Example 4.13. Let f (x, y, z) = xk + yk + Zk. The singularity of 
f- (0) may be resolved by blowing up the origin in C3. Let M be the reso- 
lution. The exceptional set A is a single curve of genus 1/2(k - 1)(k -2). 
h()= '/6k(k - 1)(k - 2). By Corollary 4.12, we have 

11 1 )(M) = 1 + -k(k - 1)(k - 2) - - (k-1)(k - 2) 62 

k [(k - 3)2 + 2] 
6 

s(1) = k(k-1)(k - 2) - -(k -1)(k - 2) 

k[(k-3)2 + 2]1 
6 

If k 2 4, then h( l)(M) > b2 = 1 and s(1) > 0. 

(1) k(5k - 7)(k - 1) 
g 6 

Definition 4.14. Let V be a n-dimensional complex analytic space 
with x E V as an isolated singularity. We say that x E V admits a C*-action 
if there exists an open neighborhood U of x in V and an embedding 
j:(U, x) -- (Cm', 0) for some m such that j(U) is closed in Cm and is in- 
variant under the C*-action a where a: C X Ctm -- Ctm is defined by 

a(t, (z1, . . ., Zm)) = (tq1Z1, . . ., tqmZ m) qi are positive integers. 

Our original proof of Theorem 4.15 is quite complicated. The follow- 
ing simplified proof of the theorem was suggested to us by Greuel. 

THEOREM 4.15. Let V be a Stein analytic space of dimension one 
with x E V an isolated singularity which admits a C*-action. Let N be the 
dimension of the Zariski tangent space of V at x. Let g(i) and m(i) be the 
invariants defined as before (cf. section 2). Then 

(a) E'=o (-1Ym(i) = 0 
(b) g(l) - g(O) = -r + 1 

where r is the number of branches of V at x. 
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Before proving our theorem, let us recall a useful theorem due to 
Reiffen and Ferrari. The proof given here is communicated to us by Greuel. 

THEOREM 4.16. Under the assumption of Theorem 4.15 the com- 
plexes (Qv,, d), (K*, d) and (_V,xV d) are exact where K* is the torsion 

of 0 * 

Proof. Let t denote the generating vector field of the C*-action, 
it the inner multiplication and L = i d + dis the Lie derivation. 

Let co E Up x be a quasi-homogeneous element of (quasi-homogeneous) 
degree q > 0 thenL &, = q w. Hence d& = 0 implies q = L & = d(i co). 

It follows that (Qv,x, d) and (K*, d) and therefore also (Qv,x, d) are exact. 

Proof of Theorem 4.15. By Theorem 4.16, we have 

N N 

E (- 1)'m (')- F, ( - 1)dim K 0.- 
i=O i=O 

Since Hl(Q*) = Q'/d(9 = 0, we have Q' = dO. Statement (b) 

follows from the exact sequence 

0O* CrIC -9 0/(9 Q'/dO -O 0 

and the fact thatg(l) = dimc(Q'/Q') = dimc(Q1/d(9) and g(O) = dimc(0/(9). 

Here (9 denotes the integral closure of (9. 

COROLLARY 4.17 (Milnor [26]). Let V be a plane curve with the 
origin as its singularity which admits C*-action. Let It be the Milnor num- 
ber of V at 0 and r be the number of branches of V at 0. Then 

(4.23) ,U = 26-r + 1 

where 6 = dim (7(9/), 0 the integral closure of (9. 

PROPOSITION 4.18 (Steenbrink [37]). Let X be a complex manifold 

of dimension n, and F a property discontinuous group of automorphisms 
of X. Then the invariants s(i), 0 < i < n, of the singularities in V = X/I 
are equal to zero. In particular the h('-') is equal to zero. 

THEOREM 4.19. Suppose V C CM is an analytic variety of dimension 
two with the origin as its only isolated singularity. Suppose a is a C*-action 
leaving V invariant, defined by 

cr(t, (z1, . . ., Zm)) = (tq1Z1 *.. *, tqmZm) qi's are positive integers. 
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Let So:C Cm be defined by so(zi, . . (Zl, Zmq. ) and let 
V= So-(V) be the cone over V. Then V' has a natural C*-action de- 

fined by o'(t, (zl, ..., Zm)) = (tzl, ... tZm) and the induced map 
<-: V' Vcommutes with the C*-action. LetA' = (V'\ {0})/C* c pm-l 

Let M' be the universal subbundle (i.e. dual of the hyperplane bundle) of 
pm-i restricted to A'. Identify Zqi with the group of q th roots of 1. 
G = Zqi i *. *) Zq acts on V' by coordinatewise multiplication. G also 
acts on A' and M'. Let ir:A" -+ A' be the normalization and 
M = 7r*(M'), the pull back of M' by -r. Then s(l) of the singularity in Vis 
computed by the following formula 

(0 if g"l 1 

(4.24) S(1) = nO 
nE dim F (At, KA_,,M"n)G if g" 2 1 

where g " is the genus of A ", n0 is the least integer 2 ((2 - 2g ")/(A" *A")) 
and KA" is the canonical line bundle of A". (F(A", KA ,M" ,)G denotes 
the G-invariant sections.) 

Proof. We shall use Orlik-Wagreich description of the canonical 
equivariant resolution of V. First observe that so is unramified off the co- 
ordinate planes and V is the quotient of V' by G. Let q': (V'\ {0}) -+ A' 
be the quotient map. There is a well-known way of adding a zero section to 
this C* bundle to get a C bundle. Let F' C (V'\{0}) X A' be the graph 
of ', let M' be the closure of "1> in V' X A', and let r':M'- A' be in- 
duced by the projection on the second factor. The induced map -y': M' -V' 
is just the monoidal transform with center 0 E V', and (r', M') is the dual 
of the hyperplane bundle on A' C Pm. Clearly u' :A' -- M' given by 
,u'(') = (0, x') defines the zero section of (r', M'). The action of C* and 
G on V' commute, hence G acts on A' and define E = A'/G we see that 
E = V\{0}/C*. Let :(V\{0}) -- E be the quotient map. As above, we 
would like to add a zero section to this map to get a map with fibers C. 
The action of G extends to M' and we define V = M'/G. Then V is just 
the closure of I", in V X E. Let -y: V --V be the natural map. Recalling 
the notation in the statement of the theorem, the map <o:M' -- V is 
ramified only along a finite number of fibers of r'. Hence there is a Zariski 
open subset U C E so that r-'(U) is non-singular. But V\,u(E) is non- 
singular since 0 is an isolated singular point of V, hence V has only a finite 
number of singularities {q1, ., qn }. These singularities are quotient 
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singularities, hence they are rational singularities and therefore they can 
be resolved by a sequence of monoidal transforms with centers at isolated 

singular points. Let p3: M -- V be a minimal resolution of the singularities 
of V. Let Bi = p-1(qj ) 1 s i c n. The composite map p = 'yfi:M --V is 
called the canonical equivariant resolution of V. We have a commutative 
diagram 

M" it MA4' z V/ M 

I V4p 
A" A'V 

y 

~~~~~T 

LetA = U 7= Bi U E be the exceptional fiber of p :M -- V. We claim that 

(4.25) F(M\A, Q1)/F(M, Q1)_ F(M"\A", Ql)G/F(M/, Fl)G. 

Any form a E F (M\A, Q1) can be considered as a form in F(V\E, Q1) 
and hence in F(M"\A", Q1)G. So we get a map f :F(M\A, Q1) -- 

F(M"\A", Q1)G. Suppose a E F(M, Q1). Then a defines a holomorphic 
1-form on V\ {q 1, . . ., qn }. Pulling back this 1-form to M" by ir, we get a 
holomorphic 1-form on M" by Hartog extension theorem. It is a G in- 
variant form because it comes from a form on M. We have proved that f 
maps F(M, Q1) into F(M", Q1)G. This induces a natural map 

f :F(M\A, ?21)/F(M, Q1) - F(M"\A", Ql)G/F(M/, Q1)G 

Let a E F(M\A, Q'1) such thatf (ac) E F (M", Q1)G. Then (so a 7r)*(f (a)) 
isaholomorphicformon V\{ql, . ..e qn }. ByTheorem4.18, ,*((l/IGI)so* 
(f (ac))) is a holomorphic form on M which coincides with a on M\A. This 
proves that f is injective. On the other hand pick any ,B E F(M" \A", Q1)G. 

Consider the holomorphic form (so a 7r)*(1) on V\E. Then ,3*((l/I G I)so*(G)) 
= ,B1 is holomorphic on M\A and f (j 1) = ,B. Hence f is surjective. 

By the proof of Theorem 4.8, we have the following decomposition 

F(M"\A" Qi ) =Fr(M",Q1)? 0 3 (A",KA,,-n). 
n=-no 
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Hence 

F(M"\A it" 
01)G1(mt 1)G = i F(A11,KA,M1 n)G 

n=-no 
and 

s(1) = dim F(M\A, Q1)/F(M, Q1) = S dimrF(A11,KA,,M/-n)G Q.E.D. 
n=-no 

The proof of Theorem 4.10 and the proof of Theorem 4.19 yield the fol- 
lowing formula (4.26). This is proved independently by Pinkham [52]. 

THEOREM 4.20. Suppose V C Cm is an analytic variety of dimen- 
sion two which admits a C*-action with the origin as its only isolated 
singularity. Let G, A", M", KA" and g" be defined as in Theorem 4.19. 
Then the Hironaka number h(1) of the singularity in V is given by the fol- 
lowing formula 

0 g 0 

(4.26) h() - dimF(A/",KA,,)G g 
nO 

E dim1F(A//,KA,,M//n+1)G if g" ? 2 
n=1 

where nO is the least integer 2 ((2 - 2g ")/(A " A "))-1. 

Remark. Theorem 4.20 is true for any dimension ?2. 

COROLLARY 4.21. Suppose V C C3 is an analytic variety of dimen- 
sion two which admits a C*-action with the origin as an isolated singu- 
larity. Let G, A", M", KA" be defined as in Theorem 4.19. Let p:M -- V 
be the canonical equivariant resolution of V in the sense of Orlik and 
Wagreich with the maximal compact analytic set A in M as an exceptional 
set. Then 

h(l)(M) = XT(A) - 1 + h(l) + dim F(A/",KA,,)G 

g(l) = u + dimF(A",KA,,)G - h 

and 

S(1) - h (1)-dim F (A ", KA,, )G 

where XT(A) is the topological Euler characteristic of A. 
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Proof. Let f be the weighted homogeneous polynomial which de- 
fines V. Let 

= dimCJxx, yzI]/(f z x ' dy If) 

and 

I= dim C [x, Y, zA/( dx ' dyd 

Since f is weighted homogeneous ,u = r. By (3.4), 

(4.27) S(') + h01)(M) = r- (y + 1) + XT(A) + 2h0 

= XT(A) - 1 + 2h(1) 

(4.28) h(l l)(M) = XT(A) - 1 + h(l) + h() -s 

Put (4.24) and (4.26) in (4.28), we get 

(4.29) h(' l)(M) = XT(A) - 1 + h(l) + dimr(A ",KA,)G 

COROLLARY 4.22. Suppose V C Cm is an analytic variety of dimen- 
sion two which admits a C*-action. Let G, A" and KA" be defined as in 
Theorem 4.19. Then 

(4.30) h(l) = S(1) + dim r(A,, KA,,)G 

In particular, 

(4.31) h( s) 

Therefore s(1) is equal to zero for any rational singularity with C*-action. 
The following Lemma is well-known. 

LEMMA 4.23. Let f (x, y, z) be a homogeneous polynomial of degree 
d. Let A' be a curve in Cp2 defined by f. Let (cLt, y 1, z1) be the coordi- 
nate patch given by x ? 0andf(yI, z1) = f(1,y1, z1).Let w:A" -A' 
be the normalization of A'. Then any holomorphic 1-forms on A" are of 
the form: 
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P(yi,z1) 

af 
az1 

where P is a polynomial of degree ? d - 3. 

Example 4.23. Let V = {z2 = y(x4 + y6)} C C3 as in Example 
3.4. V admits a C*-action or 

U:C* X V-* V 

(t, (X, Y, Z)) -*(t3X, t2y, t7Z). 

Then V" = {x', y'z'):x" 12y 2 + y"4 -z"4 = 0}. Identify Z3, Z2 and Z7 

with the groups of 3th roots, 2th roots and 7th roots of 1 respectively. 
G = Z3 0) Z2 0) Z7 acts on V' by coordinate multiplication. 

An easy computation shows 

r( A"A)G J a1 7 :aEC}. 

By Corollary 4.21, we have 

dimH'(M, Q1) XT(A) - 1 + h(l) + dim r(A/,KA,,)G 

=(3 + 1 -2)- 1 + 2 + 1 

=4 

dim r(M\A, Q1)/r(M, Q1) - h 1 -dim r(A A, KA,,)G 

= 2-1 
2- 1 

=1. 

g(l) = A + 1 - XT(A) - X(1) -2 

= 22 + 1 - 2 + 4 - 2.2 = 21. 
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5. Noether's formula for strongly pseudo-convex manifolds of di- 
mension 22 and universal formula for curve singularities. In order to 
prove Noether's formula for arbitrary strongly pseudo-convex manifolds or 
a universal formula for arbitrary curve singularities, we need to introduce 
one more concept which has arisen naturally from the Poincare complex. 
This was studied by Bloom and Herrera [8], Reiffen [30] and Saito [33]. 

Definition 5.1. Let X be a complex analytic space and xo E X an iso- 
lated singular point. Let 

0 C -- 
0,xO 

- 
QXX,x0 OxXO 

be the Poincare complex at xo where d-1 is the inclusion map. Then the 
Poincare numbers of X at xo are defined as follows. 

p(i) = dim Ker di/Im di1 i 2 0. 

We remark that p(i) = 0 for i > N where N is the embedding dimen- 
sion of X at xo. By Bloom and Herrera, all these numbers are finite. 

Now let (X, xo) be an isolated hypersurface singularity, dim(X, xo) = n. 
In [9], Brieskorn proved that p(i) = 0 if i s n - 2. Later Sebastiani [49] 
proved that p('-1) is also equal to zero. In [33], Saito proved that p(n) = 0 if 
and only if (X, xo) is quasi-homogeneous. The proofs of Brieskorn, Sebastiani 
and Saito are purely local (the global argument of Brieskorn in his co- 
herence theorem can be avoided by using the main theorem of Kiehl- 
Verdier). In [48], section 4.4, Greuel generalized the above result to com- 
plete intersection (X, xo). 

The following universal formula for curve singularities (Theorem 5.3), 
is the best formula one can obtain in the sense that no condition is im- 
posed on the singularities. Milnor's formula [26] for plane curve singu- 
larities is a particular case of our formula. The original proof of our for- 
mula is quite complicated. The proof given here is suggested to us by 
Greuel. 

LEMMA 5.2. Let X be a complex analytic space and xo E X an iso- 
lated singular point. Let 

O- C -(X x ox * * o 

be the Poincare' complex. Let J1 be the ker of d'. Then there exists a Stein 
open neighborhood V of xo in X such that 
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(5.1) HP(V,dQ1)=O and HP(V,J1)=O forall p?2l and i?0O. 

This V can be chosen to be arbitrary small. 

Proof. By Milnor [26], we can choose arbitrary small Stein open 
neighborhood V of xo in X such that V is contractible to xo. This implies 
that HP(V, C) = 0 for p 2 1. As V is Stein, HP(V, Qi) = 0 for p 2 1. By 
considering the long cohomology exact sequences associated to the fol- 
lowing sheaf exact sequences. 

0 C J J? /C O 

0dOs, 0 v d 

0 P dv J JIdQ1 0 

one sees inductively that HP(V, dQ1) = 0 and HP(V, J1) for all p 2 1 and 
i 2 0 by observing that J?/C and Ji/dQiv1 i 2 0 are sheaves on V with 
supports only on xo. Q.E.D. 

THEOREM 5.3. Let V be a complex analytic space of dimension one 
with x as an isolated singularity. Let g(i), m(i) and p(i) be the invariants of 
V at x as defined before. Let N be the dimension of the Zariski tangent 
space of V at x. Then 

N N 

(5.2) ES (-lJ)ip Y) + g(?) _ g(l) E (- 1)'m(') = r- 1 
i=O i=O 

where r is the number of branches of V at x. 

Proof. Since the Euler characteristic of a complex is equal to the 
Euler characteristic of its cohomology, we get from the sequence 

0 --,H'(Q*) --,Q'Id< Q_,2 ON 
. 
.Q 0 

the following formula 

N N 

p(l) - dim(Ql/d(9) + S (-l)m(@) = , (_1)p(i). 
i=2 i=2 
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From the exact sequence 

0 -O K - 
1 Id'/dO -- Q1/dOd-9 Q'/Q' I 0 

and from dim(Q1/dO) = 6 - r + 1 (cf. (2.2) of [5]), the result follows. 
Q.E.D. 

Remark. Formula (5.2) is a generalization of Milnor's formula (cf. 

Theorem 10.5 of [26]) for plane curve singularities to arbitrary curve 

singularities. 

Definition 5.4. Let I' be a locally free sheaf over M, a strongly 

pseudo-convex manifold. Then x(ff) and X(M, 5f) are defined as follows. 

n 

x (9F = E ( -1) q dim Hq (M, 1F) 
q=l 

X(M, 9F) = dim r (M\A, 9)/r(M, 9F) -X(f) 

where A is the maximal compact analytic set in M. 

THEOREM 5.5. Let M be a n-dimensional strongly pseudo-convex 
manifold of dimension n. Suppose M can be blown down to a Stein ana- 

lytic space V with x as its only singularity. Let g(i), m(i) p(i) and s(i) be the 

invariants as defined before. Let N be the dimension of the Zariski tangent 

space of V at x. 

(a) If x is a surface singularity, then 

N N 

(5.3) dimHI(M, 9) - dimHl(M, Q1 E (- 1 )ip() _ E (- 1 )im(i) 
i=O i=O 

+ g(O) - g(l) + g(2) -XT(A) + 1 

(b) If x is a higher dimensional singularity i.e. n 2 3, then 

n-1 N N n 

(5.4) E (-1)'X (Mg Q') E (- 1)ip() E (- 1)'m(') + E ( 1)ig(') 
i=O i=O i=O i=O 

n-1 

+ O (-1)is(i)-XT(A) + 1 
i=l1 
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where XT(A) in (a) and (b) is the topological Euler characteristic of the ex- 
ceptional set A. 

Proof. (5.3) and (5.4) are completely local. We may assume [26] that 
V is topological contractible to x. Let JP = ker(d1: Qv - Qi+2 ). Consider 
the following commutative diagram with exact rows. 

0 * C- C - 0 --- 0 on M 

0 *C *J?o * J?/C -- 0 on V 

Since H'(V, C) = 0, the rows of the following commutative diagram are 
exact 

0- r(M, C)- r(M, C) 0 0 

7j4 7j4 7j4 

0 r(V, C) r(V, Jo) F r(V, J?/C) 0 

By snake lemma, 

dim ker (?r*: r(V, J?0) -,r (M, C)) -p (?) = 0. (1, a) 

As H'(V, JO) = 0 by Lemma 5.2, the commutative diagram with exact 
rows 

0 * C * 0 * dO * 0 on M 

0 * J? * (9 * d/9 0 *Oon V 

gives the following commutative diagram with exact rows 

0 - F(M, C) - F(M, () --ddr(M, () - 0 

7r* 7r* 7r* 

0 
r F(V, Jo) * r(V, () d rF(V, dO) * 0 



1094 STEPHEN S.-T. YAU 

By snake lemma 

-dim ker(7r*:r(V, J0) r (M, C)) + m(?) 

- dim ker(ir*: r(V, dO) 

dr(M, ()) + 0 - g(O) 

+ dim dr(M, 0)/r(V, dO) = 0 (1, b) 

-dim dr(M, 0)/r*rF(V, d O) - dim r(M, d O)/dr(M, () 

+ dim r(M, d0)/r*rF(V, dO) = 0. (1, c) 

From the long cohomology exact sequence, 

o r (M, c) +r (M, 0) -+r (M, d 0) -,H 1(M, C) 

H'(M, 0) --,H'(M, d O)... 

we assert that 

dim r(M, dO)/dr(M, (9) + XT(A) - 1 - X(O) + X(d(9) = 0 (1, d) 

where 
n 

x(dQ') = (-l)q dimHq(M, dQi). 
q=1 

Consider the following commutative diagram 

0 *dQ dQi o 0 on M 

0 .dD . J+ 1 .J'+ 1IdD . 0 on V 

Since H'(V, dQi) = 0, we have the following commutative diagram with 
exact rows. 
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0-- r(M,d9') r(M,d9') 0 0 

III 
0 r (V, d Q1) r(V, Ji+l) F (V, Ji+l/d i) 0 

By snake lemma 

(-1)' dim ker( r*: r(V, dQ' ) 

r (M, d i2)) + (-l)i+1 dim kerO* rF(V, Jl+l) 

r (M, d iQ)) + (1) ip(i+l) + (-l)i+1 dim r(M, d 2i)/I7r*r(V, d iQ) 

+ (-1)i dim r(M, dQi)/Ix*r(V, Ji+1) = 0 (i + 1, a) 

=0 (i+1,a) 

As H'(V, Ji+l) = 0 by Lemma 6.2, the commutative diagram with 
exact sequence 

O dQi , Q'+1 . d Q'+ . Oon M 

i i~ ~ o 

O , P+1 .Qi+1 .dQ'+' . on V 

gives the following commutative diagram with exact rows 

? r r(M, d i) r r(M, Qi+ 1) . dr (M Qi+1) .- o 

7r*j r* Ir*I 

0 F (V, Ji+l) F (V, Qi+1) F (V, dQi+l) 0 

By snake lemma 

(-1)i dim ker(ir*:r(V, Ji+1) 

-- r(M, dQi)) + (-1)i+lm(i+l) + (-1)i dim ker(7r*:r(V, dii+l) 
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drF(M, Qii+l)) + (-1)i+1 dim r(M, dQ7i)/Ix*r(V, Ji+l) + (-1)ig(i+l) 

+ (-l)i+ldr(M, 9i+l)/x*r(V, d2i+l) = 0 (i + 1, b) 

(-1l)i dim dr (M, Qi+ l)/r*r (V dQi'+ 1) 

+ (-1)i dim r (M, dQ2i+1)/dr(M, Qi+1) 

+ (-1)i+1 dim r(M, dQ7i+l)/x*rF(V, dQ2i+l) = (i + 1, c) 

On the other hand from the long cohomology exact sequence 

O r (M, dQY) - rF(M, Qi+l) - rF(M, d 2i+l) -- H'(M, d Q1) 

H H1(M, Qi+1) -- H1(M, d 2i+l) 

we get 

(-1)i'+ dim r(M, dQ72i+l)/dr(M, Qii+l) + (_1 )i+lx(dii) 

+ (- )i+2X(Q2i+l) + (-1)i+1x(dQ2i+1) = 0 (i + 1, d) 

Summing (1, a), (1, b), (1, c), (1, d), (i + 1, a), (i + 1, b), (i + 1, c) and 
(i + 1, d)for0 c i c n - 1, we obtain 

(5.5) - E (-l p(i) + E (-1)im(i) - (- V9(i) + XT(A)-1 
i=O i=o i=O 

-X((9) + X(91) + ... + (-j)nX(9n-1) + (-l)n+ dimr(V, dn) = 0. 

Since H'(V, do2) = 0, the sheaf exact sequence 

0 don Jnl+l - j dn 0 

on V tells us that 

(5.6) dim r(V, dQn) = dim r(V, Jnf+1) - p(nf+l) 
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On the other hand, the exact sequence 

0 -* j n+1 -* dn+?l -O 0 

gives 

(5.7) dim r(V, Jn+1) = M(n+) - dim r(V, don+1). 

Put (5.7) in (5.6), 

dim F(V, dn) = M(n+1) (n+1)- dim r(V, dn+1). 

Continuing this process, we obtain 

(5.8) dim r(V, dQn) = (M(n+ ) -p(n+l) _ (m(n+2) _-p(n+2) 

+ ... + (_1)N-n-l(m(N) - p(N) 

Put (5.8) in (5.5), (5.3) and (5.4) follows easily. Q.E.D. 

The following Theorem is due to Brieskorn [9] if one uses Sebastiani's 
result. 

COROLLARY 5.6. Let V be the Stein analytic space of dimension n 
with x as its isolated hypersurface singularity. Suppose in a neighborhood 
of x, V is isomorphic to {f = 0} where f is holomorphic in a neighbor- 
hood of the origin in Cn+1. Let 

u =dim C azo, z 1, z,Zn /f ...: af) 

7= dim Cfzo, z 1, Zn * / af 'f af3 f rdimCjjz0,z1, ~ az az1 a 
) 

and p(i) be the Poincare' numbers of Vat x. Then the Poincare' characteristic 

n+1 
E (-1l)ip (i) = (-_l)n (,U- 7T). 

i=O 

In particular p(n) = - r. 
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Remark. Corollary 5.6 follows also from Iu = dimc n I/d n-I 

(cf. [48], Proposition 5.1) and the exact sequence 

0 Hn(n *) -n/d 2n- I d Un+ I ) 

Compare the more general statement in [48], Proposition 5.7(iii) for com- 
plete intersections. 

Added to the proof. This paper has been circulating for a while. 
Since then, we have made two applications of our theory developed in this 
paper (cf. [53], [54]). Unfortunately this paper will appear in the journal 
form later than the above two papers. 

UNIVERSITY OF ILLINOIS, CHICAGO 
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