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Intersection Lattices and Topological Structures of
Complements of Arrangements in CP2

TAN JIANG - STEPHEN S.-T. YAU

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVI (1998),

1. - Introduction

An arrangement of hyperplanes A is a finite collection of C -linear sub-
spaces of dimension (d - 1) in Cd. Associated with the arrangemant A is an

open real 2d-manifold the complement M(A) = Cd -U[H: H E ,A.} . The
central problem in this area is to decide to what extent the topology or differ-
entiable structure of is determined by the combinatorial geometry of A
and vice versa.

The theory was first initiated in 1969 by V. I. Amol’d [ 1 ], who calculated
the Poincar6 polynomial of the pure braid space Mi and the cohomology ring
structure of H*(Mt), where Mi is the complement of the complexified braid
arrangement At defined by

In general, for an arbitrary arrangement A, define holomorphic differential forms
where aH is the linear form defining the hyperplane H for h E A,- 

27ri H

and let denote the corresponding cohomology class. Let

be the graded C-algebra of holomorphic differential forms on generated
by the úJH and 1. Amol’d conjectured that the natural map 17 - [17] of

R (A) - H* ~M (,,4.), C) is an isomorphism of graded algebras. This was

proved by Brieskom [2] in 1971, who showed that the Z-subalgebra of R(A)
generated by the forms WH and 1 is isomorphic to the singular cohomology
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H* (M(A), Z). Although Brieskom proved the Arnol’d conjecture that R(A) is
isomorphic to H* (M (A), C) as a graded algebra for the arbitrary arrangement
A, it was not known whether the algebra R is determined by the combinatorial
data of A, since the linear forms enter the definition of R(A). In 1980, Orlik
and Solomon [16] introduced a graded algebra A (A) to an arbitrary arrangement
A. A(A) is a combinatorial invariant of A. The beautiful result of Orlik and
Solomon asserts that there is an isomorphism of algebra R(A). This

together with the Brieskom’s solution to the Arnol’d conjecture implies that the
cohomological ring H* (M (A), C) is a combinatorial invariant of A.

Let .A, be an arrangement of hyperplanes in (C3 and let .,4.* be the corre-

sponding arrangement of lines in Cp2 . Then we have M(A) = M(A*) x C*
(cf. [18]), where M (,,4*) = Cp2 - UA * . Topology and differentiable struc-

ture of M(A*) are important in the theory of hypergeometric functions (see
the work of Gel’fand [8] and his subsequent papers, the work of Deligne and
Mostow [3], and subsequent papers by Mostow). Moreover, they play a role in
some interesting problems in algebraic geometry (see especially the works of
Hirzebruch [9] and Moishezon [13]). Although the conjecture that the homo-
topic type of M(A*) is a combinatorial invariant of the projective arrangement
of ,,4* seems disproved by G. Rybnikov [20] in 1994, we have shown [ 11 ] that
for a very large class of projective arrangements in the diffeomorphic type
of M(A*) is indeed a combinatorial invariant of A*.

DEFINITION. Let ,,4* be a projective arrangement of lines in Cp2 , The set
of all intersections of elements of ,A.* partially ordered by reverse inclusion is
denoted as L(A*).

It is natural to ask whether the combinatorial data L(A*) of the projective
arrangement are determined by the homotopic type, topological type, or diffeo-
morphic type of M(A*). For the first question: Falk has written a series of

papers [5], [6], and [7] on whether there are combinatoriably distinct arrange-
ments that have homotopic equivalent complements. In [6], Falk constructed
two projective arrangements in each of which has two triple points and
nine double points. The homotopic equivalence of their complements was shown
in [7]. In view of this example, one would like to know whether L(A*) is
determined by the topological type of M(A*). The following theorem answers
this question affirmatively.

MAIN THEOREM. Let Ai two projective arrangements in If
homeomorphic to M(A2), then L (,,41 ) is isomorphic to L(A2).

In view of Falk’s example mentioned above, we have the following corollary.

COROLLARY. There exist two projective arrangements Ai and ,~4.2 in such
that and M (,,4.2 ) have the same homotopic type, but they do not have the
same topological type.

In Section 2 we recall some necessary definitions and results in three-

manifolds that are due to Waldhausen [22]. In Section 3 we study the boundary
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of a regular neighborhood of an arrangement .A* in using Waldhausen’s
theory on graphed manifolds [21]. By restricting ourselves to nonexceptional
projective arrangements in we show in Section 4 that if two such arrange-
ments have the same topological types, then they have the same graph structures
(again in the sense of Waldhausen). In Section 5 we prove the main theorem
for nonexceptional arrangements. In Section 6 and Section 7 we finish the proof
of the remaining part of our main theorem for the exceptional arrangements.

The second author learned this important open problem during P. Orlik’s

interesting lectures at CBMS conference on arrangements at Flagstaff in 1988.
The main theorem of this paper was announced in [12].

Acknowledgment. We gratefully acknowledge both referees for their careful
reading of this paper and especially for providing us many useful comments.

2. - Definitions and preliminaries

In this section we recall some necessary definitions and important results
on three-manifolds due to Waldhausen [22].

Throughout this section, by a manifold, we mean an orientable compact
three-dimensional manifold with or without boundary.

A surface is a connected two-manifold. It is compact and orientable, unless
the contrary is stated explicitly. A surface F in the manifold M is properly
embedded (i.e., F n a M = a F, where a denotes boundary). A surface in 8 M
is a submanifold of a M. A system of surfaces in M or a M consists of finitely
many, mutually disjoint components of the above two types.

Let F be a subspace of M. U(F) denotes a regular neighborhood of F.
A regular neighborhood is always compact and sufficiently small. A typical
construction is as follows. Choose a finite triangulation in which F is a sub-
complex. The closed star of F in the second bary center subdivision of this
triangulation is then a regular neighborhood of F.

An isotopy deformation of M is a level preserving map h : M x I - M x I,
I = [0, 1], such that from each t 

- ht is a homeomorphism from
M onto itself and ho = Identity. We often abbreviate "isotopy deformation" as
"deformation."

Subspaces N, and N2 in M are called isotopic in M if there is an isotopy
deformation of M : ht, t E I , such that = N2.

DEFINITION 2. l. Let M be a manifold. Let F be a system of surfaces in M
or am. F is compressible in M if either one of the following two cases hold.

(a) There is a noncontractible simple closed curve k in Int(F), and a disk D
in M, Int(D) C Int(M), such that D n F = a D = k.

(b) There is a ball E in M such that E n F = a E .

F is incompressible in M if and only if it is not compressible in M.
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DEFINITION 2.2. A manifold M is called irreducible if every two-sphere
in M is compressible.

Thus M is irreducible if and only if each two-sphere in M bounds a three-
cell in M. (Remember: If M is irreducible, and 0, then either M is a
ball, or else genus(am) &#x3E; 0, and hence H1 (M) is infinite.)

DEFINITION 2.3. A manifold M is called boundary-irreducible if aM is

incompressible.

The following lemma is a well-known corollary of the sphere theorem.

LEMMA 2.1. Suppose M is irreducible and 1fl (M) is not finite. Then M is

aspherical, that is, 1fj (M) = 0, for j &#x3E; 2.

Lemma 2.2 below seems to be widely known. A proof is given in [23].

LEMMA 2.2. Let M be an irreducible manifold.
(a) 0, and M is not a ball, then there exists in M an incompressible

surface F such that 0 =A [a F] E H1 (aM).
(b) If a M = 0, then there exists in M an incompressible surface ifand only if either

not finite or ~1 (M) is a nontrivial free product with amalgamation
(or both).

If F is a separating incompressible surface in M, aM = 0, then 7r, (M) is a
nontrivial free product with amalgamation, A *c B, where C ~ 7r, (F),
in a natural way.

DEFINITION 2.4. Let M be an irreducible manifold that is not a ball. M is

sufficiently large if and only if there exists an incompressible surface in M.

REMARK 2.1. There exist irreducible manifolds with infinite fundamental

group, which are not sufficiently large [23].

Let T = Tl U... U Tn (n &#x3E; 0) be a system of tori in Int(M), and U (T ) be
a regular neighborhood of T in M.

DEFINITION 2.5. If each component of M - Int(U(T)) is homeomorphic
to a fiber bundle with S 1 as fiber, then T is called a graph structure of M. A
manifold with a graph structure is called a graph manifold.

Let T, be an arbitrary fixed component of T. U(TI) D Tl is a component
of U(T). So is homeomorphic to Tl x I. Let T’ and T " be the boundary
surfaces of The component of M - Int(U(T)) which is pasted along
T’ (respectively, T") is denoted by Ml (respectively, M2). We can compare the
homology class of curves in T’ and T" by the natural isomorphism

Hence we can talk about intersection of homology classes of curves on T’
and T" .
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DEFINITION 2.6. A graph structure T of a manifold M is called reduced if
none of the following ten situations occur. A manifold with a reduced graph
structure is called a reduced graph manifold.
(Wl) M2 and MI is a Sl-bundle over the annulus.
(W2) A fiber of MI is homologous in TI to a fiber of M2.
(W3) Mi = S’x D2 (D2 = 2-cell) is a solid torus, and a meridian curve

{ p } x S 1 c 8Mi has intersection number with a fiber of M2 in Tl .
(W4) sf x D 2 (D2 = 2-cell) is a solid torus and a meridian curve

{p} x S 1 c aM, is homologous to a fiber of M2 in Ti.
(W5) Ml is a S 1-bundle over the Mobius band, and the homology class ft,

in 8Mi = T’ of the boundary of a section of Ml is homologous to a
fiber of M2 in Tl.

(W6) Ml and M2 are SI-bundles over the Mobius band, and it, 1 is homologous
to it2, where /ti is defined as in (W5).

(W7) M-Int(U(T)) has two components. One of them is a graph manifold Q,
defined in Section 3 of [21], which is homeomorphic to an Sl-bundle
with orientable total space over the Mobius band. The other is not a
solid torus.

(W8) Mi = M2 ~ A x = annulus) -- I x S 1 x S 1 and the pasting map
S 1 x S 1 

x S 1 is given by a matrix of trace ~2. -

(W9) Ml and M2 are solid tori.
(W 10) T = 0, and M is a SI-bundle over S2 or Rp2 (real projective plane).

3. - The boundary of a regular neighborhood of an arrangement A* in Cp2

Let ,~.* be an arrangement in Cp2 and N(A*) = t. Suppose that A*
has xl , ... , 0) as multiple intersection points (i.e., multiplicity 3).
We blow up Cp2 at f xl , ... , We get a set .r4* of lines that includes the

proper transforms of the xi in a blown-up surface is called an associate

arrangement in CP2 induced by ,A* . Suppose that Ã * = {.~ 1, ... , ~}. Each pair
of lines of ~4* intersects at most at one point. Let N (,,4.*) = which

is connected. Let U (,,4.* ) be a regular neighborhood of N (.,4* ) and K(,4-*) =
9(~/(~4*)). Thus K (,,4.* ) is a plumbed three-manifold which is homeomorphic
to K(A*), the boundary of a regular neighborhood of N(A*) in Cp2.

K (,,4* ) can be also obtained by pasting some SI-bundles together. Consider
the boundary of regular neighborhood of a line ii i E .4* as a Sl -bundle Ei -- ti.
If two lines f, I and .~2 of ,,4* intersect at a point x, let Di be a disc in ti such
that x E Int(Di ) (i = 1, 2). Define E’ and glue E’ and E2 along
Ei I a Di . In other words, we choose a trivialization of which is S We

then glue them together according to the map f - 0 , ) : s 1 x S -* SI x 
which switches the base of EllaD, with the fiber of E21aD2’ More generally, if
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ti intersects ni number of times in ,~1.* - then we consider the restriction
of the Sl-bundle over ti i to n i -punctured sphere. The boundary of its total

space is a disjoint union of ni tori, each of which is pasted along with another
S 1 -bundle. Let T (,,4*) = TIll...ll Tm be the disjoint union of all such tori in
~(.4*). Thus K (,,4* ) is a graph manifold with graph structure T(.4*).

From this graph manifold A~(.4*) and its graph structure T (,,4.*), we define
a weighted graph G(~4*) as follows. For each ti of ,,4*, one vertex vi with
weight (ti - ti) correspods to the self-intersection number of ii in CP2. Each
torus in the graph structure T (,,4* ) corresponds to an edge of G(~4*). If lines ii
and ii of ,,4* intersect at a point, then an edge of G(,i*) is defined to have vi

and vj as its adjacent vertices. Thus G(~4*) consists of n vertices VI, Vn
and m edges el , ... , em.

Now let us consider the case when the graph manifold K (,,4.* ) with graph
structure T(~4*) is irreducible. First we have the following lemma.

LEMMA 3. l. If A* is an arrangement such that each .~ E A* has at least three
intersection points with other lines of ,A*, then K (,A*) is a reduced graph manifold
with reduced graph structure T (,,4.*).

PROOF. Suppose that the arrangement .A* in satisfies the condition in
Lemma 2.1. Then 4* induced by .,4* satisfies the same condition, since each
added exceptional line Cpl from blowing up of N(A*) must intersect at least
three original lines in ,,4* .

Let M = I~ (,,4* ) - Int ( U ( T (,,4* ) ~ ~ , where U ( T (,,4* ) ~ is a regular neigh-
borhood of T (,,4* ) in K (,,4* ) . We can see that each component Mi of if
corresponds to a line ii in ,A.* and Mi is an Sl-bundle over an ni-punctured
sphere Bi 3 by our assumption). So Mi is not homeomorphic to a

solid torus (S 1 x D2), an S 1-bundle over the annulus, or an S 1-bundle over the
Mobius band for each i = 1,..., n . Thus the situations from (W 1 ) to (W9)
except (W2) are excluded. (W 10) is obviously not true here. With regard to
the exclusion of (W2) by looking at the glue map f, one can see that fibers
of Ml and M2 are representative of the two generators of respectively,
when Ml and M2 are glued together along 8 (U(Ti)) . D

On the other hand, if there is a line f in ,,4.* that contains at most two

intersection points, then we have only the following cases.

(Case 2a) i contains no intersection point. It follows that ,,4* = (I). Then

K(A*) = ~(~4*) is an Sl-bundle over the two-sphere, which is

precisely case (W 10) of Definition 2.6. So K (,,4*) is not a reduced
graph manifold.

(Case 2b) t contains only one intersection point. Thus ,~4.* is a pencil. The
component of M = K(Ã*) - that corresponds to I
is homeomorphic to S 1 x D2 and its meridian curve { p } x S 1 in

x D2) is homologous to a fiber of an adjacent component of
M by the glue map f. So (W4) of Definition 2.6 is true, and

K (,,4*) is not a reduced graph manifold.
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(Case 2c) .~ contains exactly two intersection points Yl and Y2. So their

multiplicities t(yi) and t (y2) are at least two. There are two further
subcases.

(Case 2c-i) t (yl ) = t (y2) - 2. Then ,,4* is a triangle; that is, ,,4* has ex-

actly three lines i2, i3 and three intersection points yl, Y2, Y3.
Clearly we have K (,A* ) = K (,,4* ) with graph structure T (,~4* ) =

and M - Ml11M211M3(= K (,,4* ) - U ~ T (,,4 * ) ) ) .
Their relations are as follows: .~1 H Ml, i2 ~ M2, i3 H M3;

Ti (i = 1, 2~ 3).
So Ml, M2 and M3 are SI-bundle over the annulus (i.e., T x I),
which means that (WI), of Definition 2.6 is satisfied here. Hence
K (,,4* ) is not a reduced graph manifold.

(Case 2c-ii) t (yl ) or t (y2) &#x3E; 2. To fix our notation, we shall assume that

t (y 1 ) &#x3E; 2. Then the exceptional line il 1 obtained by blowing up y 1
contains at least three intersection points. Let M (respectively, M 1)
be the component of if that corresponds to .~ (respectively, 
Thus M is an SI-bundle over the annulus, and M1 is an Sl-bundle
over nl-punctured sphere 3). So (WI) of Definition 2.6 is
valid here.

Thus we have the following proposition.

PROPOSITION 3.2. Suppose that A* is an arrangement in CP 2. Then K (I*) is
a reduced graph manifold with a reduced graph structure T (,A.*) if and only if each
line of A* contains at least three intersection points.

Recall the following theorem and lemma in Section 7 of [21 ] .

THEOREM 3.3. A reduced graph manifold is irreducible.

LEMMA 3.4. Let M be a reduced graph manifold with the graph structure
T = Tl U ... U Tn. Then Tl is compressible if and only if one component of
M - Int ( U (T)) which is pasted along U (Tl ) is a solid torus.

From these results we have the following corollary.

COROLLARY 3.5. If A* is an arrangement with at least three intersection points
on each of its line or A* is a triangle arrangement, then K (,~1.*) is irreducible and
T (,,4*) is an incompressible surface system in K (,~1.*).

4. - Two arrangements ,,4* and B* in with the same topological type

Throughout this section, let ,~4* and ~3* be two arrangements in 

M(A*) = Cp2 - N(A*), M(B*) = N(B*), and let cp : M (.A* ) -~ M(B*)
be a homeomorphism.
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PROPOSITION 4.1. Let U (A*) and U (B*) be two regular neighborhoods of ,A*,
and B* respectively. Then U (,,4* ) - N(A*) is homotopic equivalent to U(B*) -
N(B*).

PROOF. Let Ul (B*) be an arbitrary regular neighborhood of N(B*). Then
K := is a neighborhood of N(A*). There is a regular neigh-
borhood U(A*) of N(A*) such that U(A*) C K. S o 2 

i.e., V := (~[(~(~))1)~ ~ (cp(KC))C = Since V is a neighborhood
of N(B*), we can choose a regular neighborhood U2(B*) of N(B*) such that
U2 (B*) C V. Thus we get

Observe that V - N (B*) is exactly ~o (U (A*) - N (A*)). So we have

where i 1 and i2 are inclusion maps. Since (i - l, 2) are regular
neighborhoods of N (,l3* ) in CIfD2 and can be contracted to U2(8*),
the inclusion map i = i 1 o i 2 : U2(B*) - N (,t3* ) ~ U1 (,l3* ) - N (,~3* ) induces
an isomorphism i* : N (,3* ) -- N (,l3* ) . Consider

(i o w) o o i 2 ) = i . We have the following induced maps

for j &#x3E; 1. Since i* = (ii 1 0 ~p)* o (~p-1 o i2)*, (i 1 0 ~p)* is onto and (~p-1 o i2)* is
one-to-one.

Similarly, we can show that is onto and is one-to-one. It
follows that In view of Whitehead

theorem, Ul (B*) - N(B*) is homotopic equivalent to U (A*) - N(A*). Since

any two regular neighborhoods of N(B*) (or N(A*)) are homotopic equivalent,
the proposition follows immediately. 0

REMARK 4.1. More generally, by the same proof, the above proposition
is still true for any pairs (X, K), (Y, H) of complexes, such that X - K is

homeomorphic to Y - H.

Observe that K(A*), the boundary of an arbitrary regular neighborhood
U(A*) of N(A*), is homotopic equivalent to U(A*) - N(A*). So we have the
following corollary.

COROLLARY 4.2. If K(A*) and K(B*) are boundaries of regular neighbor-
hoods U(A*) and U(B*) of N (A*) and N(B*) respectively, then K (,,4* ) "’ K (B*)
homotopically.

COROLLARY 4.3. Let 4* (respectively ,L3* ) be the induced arrangement from A*
(respectively B*) by blowing up. Then K (,A.*) ’~’ K (,l3*) homotopically.
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Before we can proceed, we need to recall a result of Waldhausen.

DEFINITION 4.1. Let M and N be compact orientable 3-manifolds. An

isomorphism 1/1 of 7r,(N) onto Jrt (M) is said to respect the peripheral structure
if for each boundary surface F of N there is a boundary surface G of M such
that C R and R is conjugate in to where i*
denotes inclusion homomorphism.

THEOREM 4.4 (6.5 of [22]). If M and N are irreducible and boundary-
irreducible compact orientable three-manifolds and 1/1 is an isomorphism from
nl (N) onto 7r, (M) which respects the peripheral structure and M is sufficiently
large, then there exists a homeomorphism f : N --~ M that induces 1/1.

LEMMA 4.5. K (,,4.* ) and K (9*) are boundary irreducible, and ~p* : Jti ( K (,A* ) )
~ ~tl (K (,~3*)~ respects the peripheral structure.

PROOF. The lemma follows immediately from the fact that 8 K (I*) = q5 =
aK(8*). D

LEMMA 4.6. If A* is an arrangement with at least three intersection points
on each of its line, then K (,~1*) is reduced, irreducible, boundary irreducible and,
sufficiently large.

PROOF. By Proposition 3.2 and Corollary 3.5, we need only to show that
K (,,4.* ) is sufficiently large. In view of a result of D. Mumford [14], we know
that the first Betti number of K (,~4*) is at least p if I* is p-connected (i.e., p
is the minimal number such that there exist some points Pi,... , Pp E 
making { Pl , ... , Pp} a tree). By Lemma 2.2 (b), K (,r4.* ) is sufficient

large. 0

From Corollary 4.3 and Theorem 4.4 of Waldhausen we have the following
proposition.

PROPOSITION 4.7. If A* and B* are two arrangements in CJID2 such that each
of their lines contains at least three intersection points and if M(A*) and M(B*)
are homeomorphic, then for K (,,4*) and K (,l3*), the boundaries of arbitrary reg-
ular neighborhoods U(Ã*) and U(r3*) of N (,,4* ) and respectively, there
is an isomorphism q5 from Jrl(K(Ã*)) onto and a homeomorphism
f : K (,A* ) -~ that induces ø.

Now we need to review some results of Waldhausen [21] before we can
prove our theorem.

DEFINITION 4.2. Let M be a reduced graph manifold. We say that M has
the Waldhausen property if none of the following three cases occurs.

(El) M - Int(U(T)) consists of the bundle over the two-sphere with three-
punctures and three solid tori,

(E2) M - Int(U(T)) consists of the bundle over the Mobius band and one
solid torus.

(E3) T =,4 0 and M - Int(U(T)) is torus x interval.
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LEMMA 4.8. If A* is an arrangement with at least three intersection points
on each of its lines, then K (.,4*) is a reduced graph manifold with the Waldhausen
property.

PROOF. This follows from Lemma 4.6 and Definition 4.2. D

In Section 9 of [21], for a reduced graph manifold M that satisfies the Wald-
hausen property, a weighted graph G (M) was introduced. It can be described

axiomatically as follow.

(G 1 ) G (M) has only finitely many weighted vertices ttl, i.c2, ... and finitely
many directed edges tri, t2 , .... For each edge, each of its end point
is incident with one vertex. G(M) is connected.

(G2) Each vertex Jvtj is assigned a triple of integers (gj, rj, sj). Here rj
is nonnegative. When rj = 0, sj is arbitrary. When if rj &#x3E; 0, sj is

replaced by a dash (or is omitted). gj is arbitrary. (As for the graph
manifolds discussed in our paper, each vertex ltj corresponds to a
component Mj of M - Int ~ U ( T ) ~ with weight given by (gj, rj, sj).
Here gj is the genus of the base of Mj, rj is the number of boundary
surfaces that are not connected to any component of T, and sj is the
cross-section obstruction when rj is zero).

(G3) If a vertex of degree one is assigned the triple (0, 0, sj), it is replaced
by a dash.

(G4) (a) If G(M) has only two vertices, both two vertices are not weighted
by a dash.
(b) A vertex of degree zero is not assigned the triple (0, 0, sj) or

(c) A vertex of degree two is not assigned the triple (0, 0, sj).
(d) A vertex of degree one is not assigned the triple (0, 1, -).
(e) If G(M) has three vertices that are weighted by dashes, and only
three edges, then the fourth vertex is not assigned (o, 0, s).
(f) If G (M) has one vertex that is weighted by a dash, and only one
edge, then the second vertex cannot be weighted (-1, 0, 

(G5) If edge ri is incident with a vertex weighted by a dash, then ri is
directed to this vertex and is weighted by a pair of integers (oti, 
where ai , fii are co-prime and 1 :s fJi  ai.

(G6) If the vertices that are incident with ri are not weighted by dashes,
then the edge ri is weighted with a pair of integers (ai,,6i), where
ai and fli are co-prime and  ai .

(G7) The following graphs or subgraphs are not considered.
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(G8) Let G* (possibly disconnected) be the subgraph of G(M) where all the
vertices with gj  0 and adjacent edges are removed. The homology
group H1(G*) is weighted by a homomorphism to Z2.

Suppose that the arrangement ,,4* in is chosen such that each line
of ,~4* contains at least three intersection points. Recall that for each ii of ,~1*
there is a corresponding vertex pi with weight (0, 0, si ), where si = fi . the

self-intersection number of ii in CP2. In G(,A*) each vertex pi has degree at
least three. There is no dash for any vertex in G (A*). So the definition of

G(.,4.*) has no conflict with (G3), (G4), and (G7). For (G5) and (G6), first we
describe the direction of weight of ri.

Let U (Ti ) be a component of U (T ) containing Ti . The boundary sur-

faces are Ti- and Ti+ with their orientation induced by inclusion -

M - Int(U(T)) and Ti+ ~ M - Int(U(T)). The direction and weight of
edge il are decided by the gluing homeomorphism from Ti- to Ti+. Let the
direction of ri be from Ti- to Ti+. From the orientation of Ti- and T+ we
choose bases {2i, and {a2, b2 } (bj is represented by a fiber of Mj, j = 1, 2,
Ti- E M1, Ti+ E M2) for and Hi (ll§+). The gluing homeomorphism
induces an isomorphism from to Hi (l§+), which is expressed by

where Ei = 1 or -1, det - -1, 0  8i  ai, (ai, = 1.ai Ii
Then ii is weighted by (ai 
In our situation, we have simply ai = 3i = 1, ~Bi - Yi = 0.

For (G8) the definition of assigning HI(G*) a weight that is a homo-

morphism to Z2 is as follows. Let M* be a (possibly disconnected) sub-
manifold of M obtained by taking away all those Sl-bundle over nonori-

entable surfaces together with those U (Ti ) which pasted along on them from
M = U (T ) U M1 U ... U Mm. H1(M*) - Hl (G*) is surjective. The kernel is

generated by for Mj C M*. For a closed path t in M*, we define
p’(.~) = Ei a (l, Ti),e’ where a (t, Ti ) is the intersection number of land Ti
module 2, 6~ E Z2,

Then p : H, (G*) - Z2 is the desired homomorphism such that the following
diagram commutes. TT /.. ,~ / /"’1*."

DEFINITION 4.3. Let G i and G2 be two graphs with properties (Gl) to (G8).
G 1 and G2 are said to be equivalent if there is 1 - 1 incidence preserving map
q5 : Gi - G2 with the following properties.
(a) q5 carries one vertex to a vertex with same weight
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(b) q5 carries one weighted edge with (a, f3) to a edge with weight (a, /~),
where c~ = + or - 1 according to the edge orientation being preserved or
not. f3 -1 is the standard representative of the coset (mod a ) of the inverse
coset of f3. We use the convention that 0-1 = 0.

(c) The induced homeomorphism q5 : G! ~ G2 by q5 induces a commutative
diagram. 

-- ,_..., -- ,_.._,

(d) Each of the following pair of graphs is equivalent.

REMARK 4.2. Condition (d) above does not occur in our graphs G (,4*) or
G(,t3*), since they are not weighted by dashes.

We are ready to state the main theorem of [21 ] (cf. (9.4) of [21 ] ), which
is essential to the proof of our theorem.

THEOREM 4.9. An oriented reduced graph manifold that satisfies the Wald-
hausen property (Definition 4.2) determines and is determined by its weighted graph
with the properties (G 1 )-(G8).

Thus, two oriented reduced graph manifolds are homeomorphic if and only if
the corresponding graphs are equivalent.

COROLLARY 4.10. Let A* and B* be two arrangements in CJID2 such that each
of their lines contains at least three intersection points. If M(,~1.*) is homeomorphic
to M(B*), then G(,4*) is equivalent to G(B*).

PROOF. This follows from Proposition 4.7, Lemma 4.8, and Theorem 4.9. El

5. - Proof of the main theorem for non-exceptional arrangements in CJID2

In this section we shall prove a weak form (Theorem 5.4) of our main
theorem.

THEOREM 5.1. Let A* and B* be two arrangements in CJID2. By blowing up
their multiple points (multiplicity &#x3E; 3), we obtain two associated arrangements A*
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and B* in some blownup surfaces Cp2. Let L(A*) and L (,,4* ) be the set of all
intersections of elements of A* and respectively, which are partially ordered by
X  Y c Y C X. Then L (,,4.* ) "-’ L (B*) if and only if L (.A.* ) "’ which

preserves weights (self intersection numbers) of lines in ,A* and 13*.

PROOF. Obviously L(A*) ~ L (,l3* ) # L (,A.* ) "--’ L (9*).
To prove the converse, for the sake of convenience but without loss of

generality, we simply assume that ~4* = 13*. Let Al = A*, A2 = ,~3* and

q5i : ~4* be a blowing up map (i = 1, 2). An element of ~4* that

corresponds to an element of by q5i is called regular with respect to Øi.
The set of all regular elements of ,,4* with respect to Oi is denoted by Ri.
The remaining elements of ,,4* that are blown down to points by Oi are called
exceptional with respect to The set that consists of all such elements is
denoted by Ei.

For fixed i (i = 1 or 2), we list the following three basic properties for
elements in ~4*.

(P 1 ) For each e E Ei, it has the self intersection number e2 = -1; for
r E Ri, r2 = E Here I denotes the cardinal
number of the set S.

(P2) Either two elements in Ri intersect with exactly one exceptional el-
ement in Ei without intersecting to each other themselves, or they
intersect exactly at one double point.

(P3) For each e E Ei, (star(e) - and Istar(e) - 3, where

star(e) is the set consists of all elements in A* that intersect with e.

LEMMA 5.2. E Ã*, if £2 =I -1, E Rl n R2. = -1 and at
most one element in has the same self intersection, then fEEl n E2
and Star(I) - (t) C R1 n R2.

PROOF. By E U E2 if .~ 2 ~ -1. Hence E i*-(E,UE2) =
R n R2. If .~ 2 = -1, then fEEl n E2 by (PI) (I)) C R n R2
by (P3). D

Clearly we have .,4* = U ( R n R2 ) U (Ei n E2 ) as the union of

three disjoint sets. (Recall RIVR2 = (RI - R2) U (R2 - Ri)). We also have
R1 - R2 = E2 - El, R2 - R1 - El - E2, RIVR2 = EIVE2, etc.

If RIVR2 = q5 (i.e., EIVE2 = q5), then El = E2, q§1 = ~2 and = A2.
So in this case, we have nothing to prove. If 0, then we wish to
find out what it looks like.

Define a set = ((Star(I) - (I)) n (RIVR2) for each f E ,,4*
LEMMA 5.3. (i) E El n E2, = ~.

(ii) If1 E R, n R2, then n E1 I = n E21-
(iii) E then I = 2. R 1 - R2 if i E R2 - R 1 and

(iv) K (f) is discrete for each .~ E .A* in the sense that any two elements of K (.~) do
not intersect to each other in ,A*.
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PROOF. (i) It is clear because El n E2 is disjoint from (P3).
(ii) In view of (P 1 ), we have

Similarly

Thus we have K (I) I = I
(iii) When E RIVR2, we have 12 = -1 by Lemma 5.2. If t E E 1 - E2 -
R2 - then we have -I = 12 = 1 E E2 : e n I by (PI); that is,

E E2 : e n 1 ~ q5) ) I = 2. On the other hand, by (P3) we know that t does
not intersect with any element in Ei . So

I - I - 0 -E- 2 = 2
and E2 - El = R1 - R2. Similarly, one can show that if t E E2 - E1,
then I = 2 and K (.~ ) c R2 - R 1
(iv) Since Ei is discrete by (P3), = (K(t) n Ei) n E2) and

n Ei = 0 for I E Ei by (P3), we need only to show that if I E R1 n R2
and i (for i = 1, 2), then tint 2 = q5. However, since E R2
intersect and t intersects with i2 E E2, we have t, n t2 = q5 in view of (P2). 0

Now we shall continue the proof of Theorem 5.1. In view of (iii) of
Lemma 5.3, we have [ =2~1-~2! ~4, and Rl V R2
must consist of some cycles. In fact, the elements of R 1 - R2 and R2 - R 1 form
the edges of each cycle alternately. But by (P2), any two elements in R 1 - R2
must either intersect at exactly one double point or intersect with exactly one
element in R2 - R 1 without intersecting each other themselves. Thus RIVR2
must consist of only one hexagon (fig. 1). Let us label the edges of this
hexagon by a 1 H e2 ~ a3 ~ e 1 ~ a2 ~ e3 ( H al), where aj E R 1 - R2,
~~Ei-E20=l,2,3).
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For i E Rl n R2, consider as a line in If t passes through the
intersection points of a n a2, (a2 or a n a3) in Al c then clearly
intersects with e3, (el or e2) CP2. On the other hand, if t does not
pass through the intersection points of al a2na3 or a, f1 a3 in cp2,
then clearly must intersect with a 1, a2, and a3 in It follows
that, if we consider t as a line in A2, t passes through el n e2, e3, and

e3 n e 1 in A2 C which is impossible because these three points are not
colinear. So only the first situation is allowed. By (ii) and (iv) of Lemma 5.3,
we conclude that = 2. In fact, must intersect with RI VR2 on exactly
two opposite edges namely, Ii naIl = 1 = lineal I or = 1 = lint21 or

= 1 n e3 I . Thus we can define

Identity, OIR,nR2 = = ej for j = 1, 2, 3. It is

clear that 0 induces an isomorphism from to L (,,4.2). Thus the theorem
is proved. A configuration for illustration of Ø2 0 ø11 : : L(A2) can
be shown as in figure 2. R n R2 = i2, ... t9 ), R2 - R 1 = e3 },

R2 = a2, a3 }, E 1 n E2 = exceptional sets obtained by blowing up three
points ~i n t6 n t2 n E5 n ~4 n E6 n i8. 0
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THEOREM 5.4. Let A* and B* be two arrangements in Cp2 such that each of
their lines contains at least three intersection points. If M (,A* ) is homeomorphic to
M(B*), then L(A*) is isomorphic to L(B*).

PROOF. In view of Corollary 4.10 we know that G(,A*) is equivalent to
G(B*). It means that each t of ,,4* with weight (t - .~) (self-intersection num-
ber) is one-to-one correspondent to a line of B* with the same weight and
Z.(.4*) is equivalent to L(B*). Thus Theorem 5.4 follows immediately from
Theorem 5.1. D

6. - Exceptional arrangements in Cp2

An arrangement in Cp2 is called exceptional if one of its lines has at most
two intersection points. We have shown in Section 4 that the topological type of
the complement of a nonexceptional arrangement in Cp2 determines the lattice
of this arrangement. In this section we shall study the cohomology rings as
well as the fundamental groups of complements of exceptional arrangements.

We shall first study the cohomology algebra of arrangement in C3 . In

general, let A be an arrangement in C~. Recall that the cohomology of its

complement as an algebra is isomorphic to Orlik-Solomon algebra over
C which is defined as follows.

Let IE = E(A) - IB(E1) be the exterior algebra of E 1 := 

Write uv = u n v for u, v E E. If I A = n, then E, as a graded algebra, can be
written as E = Ep, where Eo = C, Ep is spanned by all eHl ... eHp with
Hk e .4. Define a map a : E - IE by 9(1) = 0, a (eH ) = 1 and ... 

=

( p &#x3E; 2) for all Hl , ... , Hp E ,,4..
Consider a p-tuple of hyperplanes S = (H, ... , Hp). Write IS I = p,

es = e Hl ... e Hp E E and ... f1 Hp E L(A) (Lattice of A).
DEFINITION 5.1. Let S = (HI, ... , Hp), r(nS) = codimension of nS. S

is said to be independent if r (nS) - p and dependent if r(nS)  p. Let Sp
be the set of all p-tuple and S = Let I = I (A) be the ideal of
E generated by aes for all dependent S E S. Orlik-Solomon algebra of ,,4 is
defined as A = A(A) = IE/I.

I is also a graded ideal. If we let Ip = I f1 Ep, then I and

alp c I p-l 1 (p &#x3E; 1). be the natural homomorphism. Let

Ap = (p (Ep), aH = ~ (eH ) for H E A and as = ~ (es ) for s E S.
Now let n = 3, A be an arrangement in c~3 corresponding to an exceptional

arrangement ,,4* in Cp2. Write

where nr=o li # q5 and n lo =1= Thus any three hyperplanes
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in { Ho, ... , Hm } (or { Ho, Hm+1, ... , Hm+n }) are dependent. Such A is an

exceptional arrangement in (C3.

LEMMA 6.1. Let A be an exceptional arrangement in (C3 as above. Then the co-
homology algebra of the complement of A is isomorphic to A(A) A p where
Ao=C, Cai (where ai =aH2), A2 = Caoak) EÐ 

and A3 (Caoaiaj.
PROOF. Ao follows from Io = 0 and Eo = C.
Since any two distinct hyperplanes are independent, (Hi, Hi) are the only

dependent elements in S2. But a (ei ei ) = 0. So 11 = 0 and El, that is,
A 1 = Cai.

For A2, we know that it is spanned by ai a j for 0  i  j  m + n. Let

ei i = eHl , i = 0, ..., m -+- n. For 1 ::::: i  j  m or m  i  j m+n, we
have eiej + e j eo + eoei = a (ei e j eo) E I. So

Thus A2 is spanned by aoai, and aiaj, 1  i  m  j  m - n.
Next we need to show that if there are ct, 1  t  m + n and cij 1  i  m 

j  m -f- n in C such that

then all c~, ci j are zero. From equation 6.2 we have ~ 

cijeiej e 12. Remember that 12 is spanned 0 :S i  j 
m or m  i  j  k  m -~- n -f- 1 ~, where we set eo. There are

e C such that

which is equivalent to

Since 0  i  j  m + n } is a base of E2, the above equation implies
immediately for 1  i  m  j  m ~- n. So
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As a2 = 0, we have

It follows that Cl = 0.
We next prove that A3 = EÐ Since any four hyperplanes

in C~3 are linearly dependent, we have

So in A, we have

On the other hand,

If (Hi, Hi, Hk) is dependent, then E 13, which means ai aj ak - 0. In

view of this statement and equation 6.3, we see that A3 is spanned by (aoaiaj :

We have left to check that if there are Cij E C such that E 
m jm~-n

= 0, then ci j = 0.
Let us denote eaefJeye8 and ejejek by eafJy8 and ei jk, respectively. By the

definition of I, we have

where we still use the convention eo. The relation ~ 
mjm+n

= 0 means E I, which implies there are 

mjm~-n
and Cijkt E C such that

Applying a on both sides of the above equation, we have

where The above equation can be written as

Since the terms eij for 1  i  m  j  m -I- n do not appear in the right hand
side of this equation, we conclude that Cij = 0 for 1 + n.
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In fact, from the proof of Lemma 6.1, we see that for any given arrangement
A = f Hl , ... , Hk) in (~3, the ideal of exterior algebra E(A) is I = I2EÐI3
where 12 is spanned by the set of with dependent (Hi, Hj, Hk) E S and 13
is spanned by the set of all and the set of all e8a(eafJy) with dependent
( Ha , HfJ, Hy) E S. Thus we have the following proposition.

PROPOSITION 6.2. Let A = { Hl , ... , Hk } be a central arrangement in (C3.
Then the cohomology algebra of the complement of ,A in C3 is isomorphic to A(A) =
Ao EÐ A 1 ® A2 EÐ A3 where Ao = C, A 1 = 1 (Cai, A2 is spanned by the set of all

= 0 for dependent ( Ha , Hp, Hy ) E S
and A3 is spanned by aaafJay (a  p  y) subject to the relations aaafJay =
a8afJay + aaa8ay -f- aaafJa8 and the relations ax(auav + avaw -E- awau) = 0 with
dependent (Hu, Hv, Hw) E ~.

LEMMA 6. 3. Let A be a central arrangement in C3 . Let A* = .~2, fnl
be the corresponding projective arrangement in Suppose that n = I A* I &#x3E; 3.

If A* is not a pencil, then b3 (M (A)), the third Betti number of M (A), is nonzero.
PROOF. We need only to show that A3 (,A) is nonzero, where A3 (,A) is the

third graded piece of the Orlik-Solomon algebra. Choose three lines fl, f2, f3
in general position from ,A*. So f 1, f2, f3 do not form a pencil. Then we

claim that a 123 0 0 in A3(A). If a123 = 0, that is, e 123 E 13 where I = ®3 o Ii
is the ideal generated by aes for dependent s, then we would have some 
and CafJy8 E C such that

By acting a on each side of the above equation, we get

where caf3y Observe that each dependent (a, P, y) corresponds to
a vertex p(a,f3,y) and that if p(a,f3,y) =1= then

is disjoint from Therefore we have

By taking a on both sides of the above equation, we get e2 - el = 0, which is
absurd. D
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7. - End of the proof of the main theorem

Let and ,,,42 be two arrangements in Cp2 and let at least one of them
be exceptional. In this section we shall finish the proof of the main theorem.
In view of Theorem 5.4, it remains to prove that under the above hypothesis, if

is not isomorphic to L(A), then M(AT) is not homeomorphic to M (,A.2 ) .
CASE 7.1. Both and ,A.2 are exceptional. Write

where Ho (respectively Go) intersects with Hl , ... , Hp (respectively, G 1, ... , G s)
at one point and intersects with Hp+ 1, ... , Hp+q (respectively, G s+ 1, ... , G s+t )
at another point.

If M(Ai) is homeomorphic to M (,,42 ), then is homeomorphic to
M(A2). By Lemma 6.1, we have p + q = s + t and pq - s t which imply
either (p, q) = (s, t) or (p, q) = (t, s). Thus is isomorphic to L(A2)-

CASE 7.2. AT is exceptional but ,,~1.2 is not. In this case we shall show that

M(Ai) is not homeomorphic to M (,,42 ) by considering the following subcases.
Case 7.2.a AT consists of at most three lines.
Case 7.2.b AT is a pencil, and 4 (fig. 3).

Case 7.2.c consists of a pencil and a line in general position, and
4 (fig. 4).
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Case 7.2.d Ai = {No, N,,.... Hp, Hp+1, ... , Hp+q } where n£=o Hi and
Hi ) are two different nonempty intersections, p &#x3E;

1, q &#x3E; 1 (fig. 5).

From Proposition 6.2 we know that the first Betti number of in CC3
is precisely JAI, the number of elements in A. In case of (7.2.a), we have

3  IA21. Thus M(Ai) is not homeomorphic to M (,,4.2 ) .
In case (7.2.b), we have the third Betti number of = 0 by Lemma 6.1

while the third Betti number of M(,,42) is nonzero by Lemma 6.3. Thus 
is not homeomorphic to M (,,42 ) .

For Case (7.2.c), let Ai = { Ho, Hl , ... , Hpl p &#x3E; 3, where Hl , ... , Hp
form a pencil and Ho is in general position. Let be the weighted graph of

and K (,,4.1 ) be the manifold that is the boundary of a tubular neighborhood
of AT in CP 2. G(Ai) is obtained by blowing up as an exceptional
line E. We denote the vertices by G(Ai) v, vo, ..., vp corresponding to

E, Ho, Hi, ... , Hp, respectively. The pictures of AT and G(Ai) are shown as
in figure 6 and the left-hand side of figure 7, where (qi, ri, si) is the weight
of the vertex vi which is defined in Section 4. By the Neuman’s calculus of
plumbing in Section 2 of [15], we can reduce G(Ai) to G’ and then to a single
vertex graph G" with certain weight (g, 0, 0) (fig. 8). Notice that if we apply
R4 or R5 in the ith step, the weight of V + Vo will change from (gi, 0, 0) to
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(gi #(-2), 0, 0) (for R4) or (gi # 1, 0, 0) (for R5), where

So if we use only step R5, then we have g &#x3E; 2, since p &#x3E; 3. On the other hand,
R4 will bring any gi down to a number  -2. Once gi is negative, both step
R4 and R5 will bring gi to a smaller number less than -2. Thus we conclude
that 2. The plumbed three-manifold M(V + Vo) corresponding to V + Vo
is diffeomorphic to by Proposition 2.1 of [15]. Observe that M ( V + Vo)
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is a reduced graph manifold with reduced graph structure T = q5 (one needs to
check only the last condition of the definition of reduced graph manifold). and
it has the Waldhausen property (cf. Definition 4.2). Now by Theorem 3.12 of
Waldhausen (cf. (9.4) of [21]), K (Ai) homeomorphic to K (A2) will imply that
G (.,42 ) is equivalent to G". Since G (,,42 ) is not equivalent to G", we conclude
that M(Ai) is not homeomorphic to M (,,4.2 ) .

For the last case (7.2.d), we blow up the points 1 Hi and and

get exceptional line El and E2, respectively (fig. 9). Number in the parentheses
is the self-intersection number. We blow down Ho to a point and get figure 10.
The graph manifold is then reduced with respect to the graph G (fig. 11), since
p &#x3E; 2 and q &#x3E; 2 in view of Lemma 4.6. Notice that G has weights (0, 0, 0)
for all its vertices. If M(Ai) were homeomorphic to M(A*), this would imply

homeomorphic to K (,,42 ) in view of Proposition 4.7, which in turn would
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imply G equivalent to G (,,42). The last assertion is not possible because 
has nonzero weights. Therefore we conclude that M(A!) is not homeomorphic
to M (,,42 ) . This finishes the proof of our main theorem.
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