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s(n- ) INVARIANT FOR ISOLATED n-DIMENSIONAL 
SINGULARITIES AND ITS APPLICATION TO 

MODULI PROBLEM 

By STEPHEN S. -T. YAU* 

0. Introduction. Let A be a complex analytic variety of codimension 
at least two in a complex manifold M of dimension n. It is well known that 
any holomorphic p-form defined on M-A can be extended across A. In 
this note, we shall discuss the case when A is a complex codimension 1 
subvariety in M. Throughout the whole paper, we shall assume A is a con- 
nected exceptional divisor in a strongly pseudo convex manifold M. In 
[21], the invariant s(p) was introduced to measure how many holomorphic 
p-forms cannot be extended across A. Among these numbers, s(n) and 
S(n -) are the most interesting ones. s(n) gives hn-((OM) (:- dim H"' 
(M, OM)). The following is our main theorem. 

THEOREM A. Let (V, q) be a n-dimensional normal singularity with 
C*-action, r: M -+ V an equivariant resolution whose exceptional set is 
denoted by A. Then 

(a) s(n-1) 2 hn-'(M, (M) - hn-I(A, 19A). 

(b) If V is Gorenstein and hn - I (M, (DM) 2 2, then s(n - 1) > O. 

As an easy consequence of Theorem A, we can classify Gorenstein 
surface singularities with C*-action which has s(l) = 0. 

COROLLARY B. (V, q) is a Gorenstein surface singularity with 
C*-action and s(1) = 0 if and only if (V, q) is either a rational double point 
or a simple elliptic singularity. 

An immediate consequence of the above Corollary B is the following. 

COROLLARY C. Let (V, q) be a Gorenstein surface singularity with 
C*-action. Then (V, q) is not rigid. 
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Our presentation goes as follows. In section 1, we formulate a conjec- 
ture about the nonvanishing of s(t- ). This conjecture is very interesting 
because of its immediate application to the deformation of singularities. 
Example 1.1 and Example 1.4 show that the conditions in the conjecture 
are important. Here we also recall some formulas which enable us to cal- 
culate s(l) in case of surface singularities. These will be used in Example 
2.6 and Example 2.7. In section 2 we prove our conjecture in case (V, q) 
admits a C*-action (cf. Theorem 2.1). Then we restrict ourself to a general 
class of weakly elliptic singularities (cf. [15]) which satisfy a maximality 
condition [20]. In this case s(2) is the length of the elliptic sequence and s 
is either the length of the elliptic sequence I or 1 - 1 (cf. Theorem 2.5). 
Recall that the elliptic sequence (cf. Definition 2.2) is defined in a purely 
topological way, i.e., it can be computed explicitly via the intersection 
matrix, however s(l) is an analytic invariant. In case (V, q) does not admit 
C*-action, we prove our conjecture is still true so long as (V, q) is a special 
class of simple hyperbolic singularity (cf. Example 2.8). In section 3 we 
give a classification of regular Gorenstein surface singularities with 
C*-action. We also prove that dim T' 2 s(l) and that Gorenstein surface 
singularities with C*-action are not rigid (cf. Theorem 3.2). In the case of 
maximally elliptic singularity, we show that dim T' is bounded below by 
the length of elliptic sequence. 

Finally I thank Professor Hironaka for his constant encouragement 
and J. Wahl for useful comment on the first draft of this paper, Sloan Re- 
search Foundation, N.S.F., Princeton University, and Institute for Ad- 
vanced Study for their generous support. I would also like to thank the 
referee for many useful suggestions on rewriting this paper. 

1. Preliminaries. Let M be a strongly pseudoconvex manifold of 
dimension n > 2 with connected exceptional set A. Let ir: M -+ V be the 
blow-down of A in M, q = 7r(A). -r is then a resolution of the Stein normal 
n-dimension space V with q as its only singularity. Recall that in [21] we 
define S(P) of the singularity q to be dimcr(M-A), Qp)/r(M, UP). The fact 
that S(P) so defined depend actually only on the singularity q can be seen as 
follows. Let QiP be the sheaf of germs of holomorphic p-forms of V - {q} 
which are locally L2-integrable in the sense of Griffiths [3]. Then actually 
QPV is equal to 0-th direct image sheaf 7r*QMp . Let 0: V - {q} V be the 
inclusion map. Then the 0-th direct image sheaf O*PV- {q} = LIVis co- 
herent by Siu's Theorem [13]._Clearly we have an inclusion LP 'v 9 Q. It 
follows easily that s(P) = dim( LIVq /QPq ). Among these numbers, s(n) and 
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s(n) are the most interesting ones. The following example is due to 
Steenbrink [14]. 

Example 1.1. Let Z be a complex manifold of dimension n, and r a 
properly discontinuous group of automorphisms of X. Then the s(p), 0 < 

p < n, for the singularities in V = Z/r are equal to zero. 
The following theorem was proved in our previous paper [19] (n = 2 

case is due to Laufer [5]). 

THEOREM 1.2. s(n) = dim H n1(M, 9). 

Notice that dim H n-(M, 0) is an important invariant in the theory 
of isolated singularities. One can classify singularities in terms of this in- 
variant. For s(n- 1), we have the following conjecture. 

Conjecture. If M is Gorenstein and dim Hn-I(M, (9) > 2, then 
S(n-1) > o. 

Definition 1.3. M is Gorenstein if there exists a meromorphic 
n-form w such that its divisor (w) is supported on the exceptional set A. 

The following example can be found in [21] or [9]. 

Example 1.4. Let M be a negative line bundle over a nonsingular 
compact Riemann surface A. Then 

00 

s(l) =dim r(M-A, ul)/r(M, Ql)= , ho(KA ? Mn) 
n=1 

where KA is the canonical line bundle of A. 
In particular if g 2 2 and A -A is very negative, then s(1) = 0. There- 

fore in the above conjecture, the Gorenstein property is important. 
The following theorem which expresses s (1) in terms of h' (M, 91) was 

first proved in [21]. 

THEOREM 1.5. Let M be a two dimensional strongly pseudoconvex 
manifold such that V = {f (x, y, z) = O} has origin as its only singularity. 

Let A = dim C[x, y, z]/(af/ax, af/ay, af/az) and 7 = dim C[x, y, z]/ 

(f, af/ax, af/ay, af/az). Then 

S(1) =- 6 (K2-5XT(A)) + 7-5 (1 + I)-dim H I(M, u ') 

where XT(A) is the topological Euler characteristic of A and K is the ca- 
nonical divisor on M. 
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In practice, the following Theorem (cf. [21]) gives a very explicit way 
to compute s(1), s(2) in case the singularity admits a C*-action. 

THEOREM 1.6. Suppose V C cm is an analytic variety of dimension 
two with the origin as its only isolated singularity. Suppose a is a C*-action 
leaving V invariant, defined by 

a(t, (z1, Z..,Zm)) = (tqZ1 1, tqmZm) qi's are positive integers. 

Let p:Cm Cm be defined by sp(z1, ..., zm) = (Zl, ., zm) and let 

VI = (p-'(V) be the cone above V. Then V' has a natural C*-action 
defined by ol(t, (z1, ..., zm)) = (tz1, ..., tZm) and the induced map 
p: V' -+ V commutes with the C*-action. Let A' = (V1 - {O})/C* C 

pm-l. Let N' be the universal subbundle (i.e., dual of the hyperplane 
bundle) of Pml restricted to A'. Identify Zqi with the group of qith roots 
of 1. G = Zq1 i ... 0 Zq acts on V' by coordinate-wise multiplication. 
G also acts on A' and N'. Let r :A" -" A' be the normalization and N" = 

7r*(N'), the pull back of N' by 7r. Then s(1) and s(2) can be computed by 
the following formulas 

'O if g"<1 

s(1) = _ 

E{dimr(A/K,KAN"-n)G i g"21 
- 00 

Ai 

{0 if g"0 

(2) = dimr(A/"/KA ,)G if g"1 

- 1 

| dimr(A//gKA,,N//-n-I)G if g"22. 
-00 

where g" is the genus of A ", KA" is the canonical line bundle of A" and 
r(A ", KAN" -n)G denotes the G-invariant sections. 

COROLLARY 1.7. Let (V, q) be a normal surface singularity with 
C*-action. Then s(1) + dim r(A", KA,,)G = dim H(M, (M). In particular 
S( )h 1(Mg 0M). 

2. Nonvanishing of s Let V be a n-dimensional Stein analytic 
space with q E V as an isolated singularity. We say that q E V admits a 
C*-action if there exists an embedding j: (V, q) -+ (Cm, 0) for some m 
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such that j (V) is closed in Cm and is invariant under the C*-action a where 
j: C* X Ctm is defined by 

J(t, (z1, ..., Zm)) = (tq, I.. tqmZm) qi an integer. 

THEOREM 2.1. Let (V, q) be a n-dimensional normal singularity 
with C*-action, r: M -+ Van equivariant resolution whose exceptional set 
is denoted by A. Then 

(a) s(n- 1) 2 hn-l(MS /M) - hn-(A, /A)) 

(b) If Vis Gorenstein and h'n-(M, /9M) 2 2, then S(n-5 ) > O. 

Proof. Since q E V admits a C*-action, there is a natural holomor- 
phic vector field X on V of the form 

a a X = qjzj ; + * * + qmZ;z 

By Hironaka, we can choose an equivariant resolution M to which the 
Euler vector field X lifts; i.e., there exists a holomorphic vector field 0 on 
M such that -r*(O) = X. 

For any irreducible component Ai of A, pick a point x E Ai such that 
x is a smooth point of A. Choose local coordinate centered at x such that 
Un= 0 is a local defining equation for the divisor A. Then locally around x, 
0 has the following representation: 

a a 
0=alda 1+ - +ana 

where ai are holomorphic functions in uI, u2, ... ., un. Since 

(al a + --- + anau )(ir*zj) = qj1r*(z) < j < m 

there exists at least one ak such that the vanishing order of ak alongAi is at 
most one. Let t(0) be the inner multiplication by 0. Let w be a holomorphic 
n-form on M-A. Suppose that X does not belong to r(M, (n (A)). Then 
there exists an irreducible component Ai of A along which X has pole of 
order at least two. In (uI, ..., un) coordinate as above, let w = a (u 

. . un )dul1 A ... A dun . Then 
n 

(O) =S(-1)'+1oaiduj A ... A dui A ... A dUn 



834 STEPHEN S.-T. YAU 

where duzi means du, is deleted from the expression. By looking at the co- 
efficient of du1 A * A duk A ...A dun, we conclude that t(O) is not in 
t(O)H0(M, QM(A)) + H?(M, QM- 1). Therefore we have the following 

LEMMA. t(O) induces an injection 

H?(M-A, il )IH?(M, QMn(A)) 

H?(M-A, n-1)/[t(O)H0(M, Qn (A)) + HO(M, QM7')1. 

Now, the second space has dimension less than or equal to s(n- 1), and 
the first has dimension 

(n)- dimH0(M, n (A))/HO(M, ) = s(n) - dim H0(M, M 0 (A(A)) 

by the Grauert-Riemenschneider vanishing theorem. Observe that QM (D 

OA(A) is the dualizing sheaf WA, and HO(WA) is dual to Hn-'(A, OA). 

This proves (a). 
From the argument above, it is clear that if there exists a holomor- 

phic n-form on M-A with poles along some irreducible component Ai of A 
of order at least two, then s(n-l) > 0. To prove (b), it suffices to prove the 
existence of such n-forms under the assumption that h n-(M, (DM) 2 2. 
Since (V, q) is a Gorenstein singularity, there exists a nowhere vanishing 
holomorphic n-form on M-A. Let wc be an element in r(M-A, fn) such 
that the image of W and W1 in r(M-A, Un)/P(M, (n) are linearly indepen- 
dent. Because r(V, (ov) -+ r(M, oM) -+ r(M-A, (9M) = r(V - {q}, (v) 
is an isomorphism, holomorphic functions on M-A extend over A. So 
f: = w1 /w is a holomorphic on M. By maximum modulus principle, f is 
constant on the compact analytic set A. Replacing f by f -f (A) if 
necessary, we may assume without loss of generality that f (A) = 0. Since 
w1 = fW is a nonzero element in r(M-A), gn)/r(M, Qn), we conclude 

that W is the required n-form. Q.E.D. 

In [20], we developed a theory for a general class of weakly elliptic 
singularities which satisfy a maximality condition. These are the so-called 
maximally elliptic singularities which have minimally elliptic singularities 
in the sense of Laufer as a special case. The following proposition was 
proved in ([20], p. 305). 

PROPOSITION 2.3. Let 7r:M -+ V be the minimal good resolution of 
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a normal two-dimensional Stein space with q as its only maximally elliptic 
singularity. Let 

ZBO = Z, ZBI, *,ZBf, ZE = ZBf+I 

be the elliptic sequence. Suppose dim H1 (M, 9) 2 2 i.e. e 2 0. Then for 
any 0 c i c Q, there exists fi E r(M, 0(-G1)) but fi r(Mm, 0(-Gi+ )) 
where Gi = Ej ZB j c i. In fact the vanishing order of fi on Ak is 
precisely1Zr Z, 0 r c i, whereAk c Bj+, and ZB = Y2 zjAj1. 

COROLLARY 2.4. Let V be a normal two-dimensional Stein space 
with q as its only maximally elliptic singular point. Let fo, fl, . .., fe be the 
functions on M as in the above theorem. Then there exists co E r(M-A, Ql2) 
such that co, fow, f,co, . . ., ffcform a basis of r(M-A, u2)/r(M, Ql2). 

Proof. This is an easy consequence of the above theorem and 
Theorem 3.11 of [20]. 

THEOREM 2.5. Let (V, q) be a maximally elliptic singularity with 
C*-action. Then, s(1) = dim H'(M, (9) = the length of the elliptic se- 

quence if dim H'(A, R) = 0. If dim H'(A, R) ? 0, then s(1) is either dim 
H'(M, (9) or dim H'(M, () - 1. 

Proof. This follows from the above corollary, the proof of Theorem 
2.1 and the fact that if dim H'(A, R) = 0, then the minimally elliptic cy- 
cle E is not reduced. 

Example 2.6. Let V = {(x, y, z) E C3:Z2 - Y3 + x9+61}. Then the 
dual weighted graph 0 of the exceptional set is 

-2 
f 2: n 

-2 -2 -3 -2 -2 

-2 

As we computed in P. 292 of [20] this is a maximally elliptic singularity 
and dim H'(M, (9) = e + 1. Since dim H'(A, R) = 0 we conclude that 
s(1) = dim H'(M, /E) = e + 1. 
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Example 2.7. Let V = {(x, y, z) E C3:x2 + y3 + Z12 = O}. Then 
the dual weighted graph for the exceptional set is 

-1 -2 

g= 1 

This is a maximally elliptic singularity and dim H'(M, 0) = 2. Using the 
Theorem 1.6, we can compute explicitly thats(1) = 1 = dim H1(M, (9) - 1. 
Notice that in this case H1(A, R) ? 0. 

The following result is the first attempt to solve our conjecture in the 
case (V, q) does not admit C*-action. 

Example 2.8. Let (V, q) be a two-dimensional Gorenstein singular- 
ity. Suppose that the exceptional set A of the minimal resolution ir: M -+ V 
is a nonsingular compact Riemann surface of genus g 2 2. Suppose 
A -A = 2 - 2g. Then sM > 0. 

Proof. Let K = -kA be the canonical divisor on M. By the adjunc- 
tion formula, we have 

-(k-1)A A=2g-2 (2.1) 

Since A -A = 2- 2g, it follows from (2.1) that K =-2A. Let S be 
the sheaf of germs of holomorphic vector fields which are tangential to the 
exceptional set. Then we have 

-+ S -( 0 - NA _+ 0 (2.2) 

where 0 is the tangent sheaf of M and NA is the normal bundle of A. 
Tensor (2.2) with OA, we have 

O 4 -+ AS A~0 ANA (2.3) ? 9A 
_ S 0g (9A 

C) ( S 
/9A NA ?+ 

(23 

because Tor1(NA, OA) = OA. Clearly the kernel of the last map is OA 

where 0A is the tangent sheaf of A. Therefore we have 

? OOA S OA 5O OA _O ? (2.4) 

We claim that dim H?(S (-A) 0& OA) - dim H1(S(-2A)) > g - 1. We 
use the exact sequence from (2.4): 
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o OA(-A) -* S(-A) 0 OA OA(-A) -? 0 (2.5) 

Therefore we have 

(g if NA* = KA 
dimH?(S(-A) (9 OA) 2 dimH0(QA(-A)) = K (2.6) 

ifg-1 N*;KA 

where NA and KA are canonical bundle and canonical bundle of A respec- 
tively. Consider the exact sequence 

0 -+ S(-3A) -+ S(-2A) -+ S(-2A) (0 OA ?+ 0 (2.7) 

Let us first recall a theorem of Wahl [16] which says that dim HA (S) = O. 
By Serre duality, this simply means that dim H'(S(2K + A)) = dim 
H'(S(-3A)) = 0 because S _ S* (0 A2S _ S* 0 K-1(-A). Hence we 
have 

dimH'(S(-2A)) = dimH'(S(-2A) 0 O9A) (2.8) 

We again use the exact sequence from (2.4): 

o - AA( 2A) -- S(-2A) 0 0A _ OA(-2A) -- 0 

Since 2g - 2 + 2A -A = 2 - 2g < 0, we have H1(OA(-2A)) = 0 by 

Serre duality. Therefore we have 
(1 if NA KA 

dim H(S(-2A)) = dimH1(0A(-2A)) = 
A (2.9) 

( ifNA* KA 

Our claim follows from (2.6) and (2.9). Now from the exact sequence 

0 +S (- 2A) - S (-A) - S (-A) (9 (9A ?+0 

It follows that there exists a global vector field on M with vanishing order 
along A is exactly one because the map H?(S(-A)) -+ H0(S(-A) 0 OA) 

is not a zero map. The similar argument as in Theorem 2.1 will finish the 
proof. Q.E.D. 

3. Classification of regular Gorenstein surface singularity with 
C*-action. It is well-known that rational + Gorenstein implies rational 



838 STEPHEN S.-T. YAU 

double point. In the proof of Theorem 3.1 a simple proof of such fact is in- 
cluded for the sake of completeness. A normal surface singularity is regu- 
lar if its s(1) is equal to zero. 

THEOREM 3.1. (V, q) is a regular Gorenstein surface singularity 
with C*-action if and only if (V, q) is either a rational double point or a 
simple elliptic singularity. 

Proof. Suppose that (V, q) is a regular Gorenstein singularity with 
C*-action. Then dim H1(M, 0) c 1 by Theorem 2.1. For the rest of the 
proof, we shall assume that M is the minimal good resolution of the singu- 
larity of V. 

Case 1. dim H'(M, 0) = 0. Then (V, q) is a rational singularity 
and M is actually the minimal resolution. Let K be a canonical divisor in 
M. By adjunction formula, we have 

Ai.K2 0 forall Ai'A (3.1) 

Since (V, q) is a Gorenstein rational singularity, we can choose K to be an 
effective divisor with support on A, i.e. K = E n A1, ni 2 0 

K2 = E ni(AiK) 2 0 (3.2) 

On the other hand, the intersection matrix is negative definite. Therefore 
K2 c 0. It follows that K2 = 0 and consequently K -Ai = 0 for all Ai by 
(3.1) and (3.2). The adjunction formula tells us that Al = -2 for all Ai. 
Then as an easy exercise, one can show that the weighted dual graph of 
the exceptional set is one of those from rational double points. By the 
tautness of rational double points [17], we conclude that (V, q) is a ra- 
tional double point. 

Case 2. dim H1(M, 0) = 1. Then (V, q) is a minimal elliptic singu- 
larity (Theorem 3.10 of [6]). We claim that A is a nonsingular elliptic 
curve. Suppose on the contrary that A is not a nonsingular elliptic curve. 
Then all the irreducible components of A are rational curves. Since (V, q) 
admits a C*-action, H1(A, R) = 0. There exists an irreducible component 
Ai of A such that Ai intersects with three other three distinct components 
of A. Let w be a nowhere vanishing holomorphic 2-form on M-A. Then the 
meromorphic 2-form X on M has pole along Ai of order at least 2 by ad- 
junction formula. This is because if X has pole of order one along Ai, then 
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Ai * K c-A?-3. On the other hand, Ai - 
K = -A - 2 by adjunction 

formula. Now the proof of Theorem 2.1 applies and we conclude that 
s() > 0. This is a contradiction. Q.E.D. 

Following Schlessinger [11], we define an Ov-module Tv by the exact 
sequence 

0 -+ ' ocV ,Nv -Tv 
- 0. 

Then Tv is the set of isomorphism classes of first order infinitesimal de- 
formations of V, analogous to H'(Y, OY) for a manifold Y. In [18], 
Tyurina shows that the Tv1 may be replaced by Ext 1 (91, 09v) (Qv denoting 
Kahler differentials) when V has positive depth along singular locus, e.g. 
when V is reduced of positive dimension. In [1] Grauert constructs a ver- 
sal deformation X -- S of V from which every other deformation W -+ T 
may be induced, up to isomorphism, by a map q>: T -+ S, with ?*(X) W. 
Moreover, the map tO: tT tS between Zariski tangent spaces is uniquely 
determined by the isomorphism class of W. As Grauert shows, the Zariski 
tangent space of S is isomorphic to Ti,. 

V is rigid when every deformation is trivial, or S is reduced to a point. 
Thus, T, = 0 is the necessary and sufficient condition for rigidity. 

In [11] Schlessinger proves that quotient singularities of dimension 
>3 are rigid. It is a long standing conjecture that there is no rigid normal 
surface singularity. The normality condition is important because the 
singularity obtained by taking two planes in C4 which meet at a point is 
rigid. 

THEOREM 3.2. Let (V, q) be a Gorenstein surface singularity with 
C*-action. Then (V, q) is not rigid. 

Proof. dim T, = dim Ext (Q4, (9v) = dim Hlq}(V, QW,) (by local 
duality). By Grothendieck's local cohomology exact sequence 

- HoX}(V, QW) -+Ho(V, Q1 ) Ho(V - {q} H (V, Q) 0 

we conclude that dim T' = dim H?(V - {q}, Qi1 )/H?(V, Q1 ) > s(l). 
Hence we only need to consider the case s(l) = 0. In this case (V, q) is a ra- 
tional double point or a simple elliptic singularity by Theorem 3.1. For 
either of these cases, Ti ? 0 as deformation theory for these singularities 
are well developed. Q.E.D. 
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Added to the proof. We have proved that 

dim T' 2 1 + dim H'(M, (9) (*) 

for Gorenstein surface singularities with C*-action (cf. the forthcoming 
paper [23]). This improves the above Corollary 3.3 by a great deal. 

Recently J. Wahl has informed us that he has proved that normal sur- 
face singularities with C*-action must have dim T' > 0, which is a conse- 
quence of (*). 

THE INSTITUTE FOR ADVANCED STUDY, PRINCETON 
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