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Outline of talk

I Chemical reaction systems

I Convergence properties

I Long-term dynamics (persistence)

Main message:
Algebraic and combinatorial techniques are complementary to
existing dynamical systems approaches.



Chemical reaction networks
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This chemical reaction network has:

I r = 3 reactions (with reaction rate constants κij)
among the . . .

I n = 3 complexes S0 + E, X, and S1 + E
which are comprised of . . .

I s = 4 species S0, S1, E, and X.



The multisite phosphorylation network

The n-site (sequential and distributive) phosphorylation
network is:

S0 + E
kon0−→
←−
koff0

ES0

kcat0→ S1 + E
kon1−→
←−
koff1

→ · · · → Sn−1 + E

konn−1−→
←−

koffn−1

ESn−1 → Sn + E

Sn + F

lonn−1−→
←−

loffn−1

FSn

lcatn−1→ Sn−1 + F � · · · → S1 + F
lon0−→
←−
loff0

FS1

lcat0→ S0 + F

Given initial concentrations,
how do the concentrations of S0, S1, . . . , E, F evolve in time?

c(t) = (cS0(t), cS1(t), . . . , cE(t), cF (t))



2-site phosphorylation in an oscillator

and KaiC in a buffer containing an excess of
phosphoenolpyruvate and 4 mM ATP, similar to
estimates of adenine nucleotide concentration in
cyanobacterial cells in the millimolar range (22).
After the oscillation had been established, we
simulated the metabolic effects of darkness by
adding ADP to bring the ATP/(ADP + ATP)
ratio to ~50%. To then simulate the effects of a
return to growth in light, we added pyruvate ki-
nase to convert the ADP to ATP, a reaction that
went to completion in ~1 hour (fig. S2). Because
the ATP/ADP ratio in vivo initially falls gradually
when cells are incubated in the dark for 8 hours
in our liquid culture conditions (Fig. 1C), we
used a 5-hour step-like pulse of ADP in vitro to
approximate the amount of time that the in vivo
cultures experience the lowest ATP/ADP ratio.

Transient manipulation of the ratio of ATP
to ADP in the KaiABC oscillator created large
phase shifts in the phosphorylation rhythm (Fig.
2A). Further, the phase response curve obtained
by altering the ATP/ADP ratio in vitro was sim-
ilar to that observed in live cells treated with
pulses of darkness: The oscillator was most sen-
sitive during the middle of subjective day (when

KaiC phosphorylation was increasing) and nearly
insensitive during subjective night (when KaiC
phosphorylation was decreasing) (Fig. 2, B and
C) (18, 19, 23). During the pulse of increased
ADP, KaiC phosphorylation was decreased rela-
tive to that in the control reaction, similar to changes
in KaiC phosphorylation in vivo when cells were
subjected to a dark pulse (fig. S1) (24).

To determine the increase in the relative
amount of ADP needed to produce this effect,
we added varying amounts of ADP to several
identical KaiABC reactions during a fixed por-
tion of the oscillator cycle. The induced phase
shift was a graded function of the amount of ADP
added (Fig. 2, D and E). Similarly, the magnitude
of the phase shift decreased when the length of
the pulse of ADP was decreased (fig. S3). Thus,
even small changes in the ATP/ADP ratio, smaller
or shorter in duration than those induced by a
rapid transition to prolonged darkness, adjusted
the time specified by the circadian clock.

To investigate the molecular mechanism by
which changes in the relative fraction of ADP
are able to alter the oscillator phase, we studied
the effect of the ATP/ADP ratio on nonoscilla-

tory partial reactions in which one of the Kai
proteins was absent. In the KaiA-KaiC reaction,
KaiA chronically stimulates KaiC’s autophos-
phorylation activity, resulting in a steady state in
which KaiC is highly phosphorylated (5, 25).
Increasing the relative fraction of ADP present
in the reaction resulted in both reduced steady-
state phosphorylation and a slower approach to
that steady state (Fig. 3A). In the KaiB-KaiC
reaction, KaiC has very weak kinase activity
and the fraction of phosphorylated KaiC slowly
decreases, allowing us to isolate the dephospho-
rylation reaction (5). We did not detect any effect
of varying the ATP/ADP ratio on KaiC’s phos-
phatase activity (Fig. 3B), nor on the stability of
KaiB-KaiC complexes (fig. S4).

Quantitative analysis of the kinetics of the
partial reactions confirmed the above observa-
tions and was consistent with a model in which
ADP acts as a competitive inhibitor of KaiC’s
kinase activity. In fitting the phosphorylation ki-
netics to an initial velocity approximation, we
estimated an effective relative affinity for ATP
and ADP that is close to unity (Krel = 0.76 T 0.15)
(Fig. 3C). This value is compatible with two sim-
ple mechanistic hypotheses: Either the true bind-
ing affinities for ATP and ADP are comparable
in the CII lobe [the seat of KaiC autophospho-
rylation (26)], or the rate of ATP hydrolysis in
CII is much faster than the rate of nucleotide dis-
sociation, so that any difference in affinity is neg-
ligible. In either case, ADP acts in proportion to
its relative abundance to decrease the KaiC phos-
phorylation rate.

To test whether the competitive inhibition
mechanism we had identified was sufficient to
explain the large phase shifts in the full oscillat-
ing reaction, we turned to a mathematical model
of the circadian clock based on experimental mea-
surements of the rates of phosphorylation and
dephosphorylation at two sites on KaiC: Ser431

and Thr432 (5). In this model, stable oscillations
arise because KaiC phosphorylated only on Ser431

interacts strongly with KaiB, trapping KaiA stoi-
chiometrically and globally promoting dephos-
phorylation. In this sense, KaiC phosphorylated
on Ser431 is autocatalytic, generating a nonlinearity
that drives the oscillator.

We modified this model so that, in accord
with our experimental observations, the kinase
rates were modulated by the ATP/(ADP + ATP)
ratio present in the reaction, as well as by the
level of KaiA activity (Fig. 4A) (5). Thus, at each
point in the oscillation, KaiC integrates clock
information (through KaiA’s kinase-stimulating
activity) with metabolic information (through the
adenosine pool). We simulated our in vitro ex-
periments within this model by transiently lower-
ing the ATP/(ADP + ATP) ratio from 100% to
50% at various times in the circadian cycle. In
simulation, pulses of competitive inhibition by
ADP were sufficient to generate large phase shifts
in the oscillator when these pulses occurred during
the phase of the cycle when KaiC phosphorylation
was rising (Fig. 4B).
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Fig. 4. A mathematical model of the KaiABC
oscillator predicts entrainment by varying the
ATP/ADP ratio. (A) Schematic of a mathematical
model for nucleotide-driven entrainment of the
KaiABC oscillator. Oscillations occur because the
Ser431-phosphorylated form of KaiC promotes its
own production from KaiC phosphorylated at
both Ser431 and Thr432 through a double-negative
feedback loop involving sequestration of KaiA.
Free KaiA promotes phosphorylation of KaiC and
inhibits dephosphorylation. Changing illumination conditions in vivo drive changes in the adenosine
pool, which in turn modulate phosphorylation rates (kphos). Although the figure shows only the effect on
Ser431-phosphorylated KaiC, changes in KaiA activity and in the ATP/ADP ratio affect all phosphoryl-
ation steps in the model. Krel is an effective relative affinity for ADP versus ATP. [KaiA]free is the free
concentration of [KaiA], and K1/2 is the concentration of [KaiA] needed to produce a half-maximal effect
on KaiC. kAphos is the maximum phosphorylation rate with saturating KaiA and 100% ATP. See (5, 28)
for complete details. (B) Simulation of the effect of lowering the ATP/(ADP + ATP) ratio from 100% to
50% for 5 hours during the subjective day (shaded region) using equal affinities for ATP and ADP (blue
curve) compared to a control in constant 100% ATP (black curve). (C) Phase response curve predicted
by the model using equal affinities for ATP and ADP (blue dashed line) as in (B) compared with in vitro
data (black circles) and in vivo data (green squares) from (19) (4-hour dark pulse, solid media) and
from this study (open triangles) (8-hour dark pulse, liquid media). All data sets were aligned so that
peak phosphorylation occurs at 36 hours (grid line), and the modeling results were scaled on both axes
to make the period equal to 24 hours.
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(Figure from Rust, Golden, and O’Shea, Light-Driven Changes
in Energy Metabolism Directly Entrain the Cyanobacterial
Circadian Oscillator, Science 2011).



Chemical reaction systems
Fix a chemical reaction network with s species.
I Each chemical complex defines a vector y ∈ Zs≥0

(ex: S0 + E defines y1 = (1, 1, 0))
I (Guldberg and Waage 1864) According to mass-action

kinetics, the concentration vector c(t) = (c1(t), . . . , cs(t))
evolves according to the following differential equations:

dc

dt
=

∑
yi→yj

is a reaction

κijc
yi (yj − yi)

Example: S0 + E
κ12−→
←−
κ21

X

dcS0

dt
= − κ12cS0cE + κ21cX

dcE
dt

= − κ12cS0cE + κ21cX

dcX
dt

= κ12cS0cE − κ21cX



Motivation

Question: Is the n-site phosphorylation network...

1. bistable?
(Answer due to Wang and Sontag 2008: only for n ≥ 2.)

2. convergent to a unique steady state? (Only for n = 1.)

3. persistent: does every species concentration ci(t) remain
away from 0? (Yes.)

Rest of talk:
How can we answer questions 2 and 3 for arbitrary networks?



Complex-balanced systems

Idea: amount produced of each complex at steady state = amount

consumed; a class of systems that converge to a unique steady state.

I Rewrite the mass-action ODEs as:

dc

dt
=

∑
yi→yj is a reaction

κij (yj − yi) cyi

= (cỹ1 , . . . , cỹn) ·Aκ · (ỹij)i=1...n,j=1...s

R#species−→ Rn →Rn → R#species

where ỹ1, . . . ỹn are the n complexes, s is the number of
species, and Aκ is the Laplacian matrix of the network.

I (definition, Horn and Jackson 1972) A mass-action kinetics
system is a complex-balanced system if there exists a

steady state c∗ ∈ Rs>0 with
(

(c∗)ỹ1 , . . . , (c∗)ỹn
)
·Aκ = 0.



Laplacian matrix example

For the following “kinetic proofreading” network:

A+B

D C

κ21
κ12

κ23

κ31

%%

ee

oo
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the Laplacian matrix is:

Aκ :=

−κ12 κ12 0
κ21 −κ21 − κ23 κ23
κ31 0 −κ31

 .

(McKeithan 1995, Sontag 2001)



Complex-balanced systems, continued

I Theorem (Craciun, Dickenstein, AS, and Sturmfels 2009): A
mass-action kinetics system is a complex-balanced system if
and only if the parameters κij lie in a certain toric variety.

I Birch’s Theorem (1963), Deficiency Zero Theorem (Horn,
Jackson, Feinberg 1970s): For complex-balanced systems, there
is a unique steady state c∗ in the relative interior of each
forward-invariant polyhedron P, called the Birch point, and it
admits a strict Lyapunov function.

I Example: “kinetic proofreading” model

(0, 1, 1, 0)
P

(0, 1, 0, 1)

(1, 2, 0, 0)• c∗



Complex-balanced systems: convergence?

I The Lyapunov function
∑(

xi log xi
c∗i
− xi

)
is not sufficient

to prove global convergence to the Birch point:

0 1 2 3 4 5

0.0

0.5
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I Global Attractor Conjecture (Horn 1974): For a
complex-balanced system with positive initial condition,

c(t)→ c∗,

for c∗ the Birch point of the forward-invariant set P.



Known convergence results

I A boundary steady state is a steady state with at least one
zero coordinate:

(0, 1, 1, 0)
P

(0, 1, 0, 1)

(1, 2, 0, 0)•

I Theorem (Anderson, Craciun, Dickenstein, Nazarov,
Pantea, AS, Sturmfels 2007–2012): The Global Attractor
Conjecture holds if boundary steady states are confined to:

I vertices of P,
I relative interior points of facets (codim-1 faces) of P, and
I relative interior points of codim-2 faces of P.

I Corollary: The Global Attractor Conjecture holds for
when the number of species is ≤ 3.

I See also Johnston and Siegel 2011,
siphons (Angeli, De Leenheer, Sontag,...),
and monotone systems (Banaji, Hirsch, Smith,...).



New result on convergence and persistence

To prove the GAC, it suffices to prove that complex-balanced
systems are persistent, that is, for all species i and trajectories
c(t) with positive initial condition, lim

t→∞
inf ci(t) > 0. (Smith, Theime)

I Thus, the GAC generalizes to:
Conjecture (Craciun, Nazarov, Pantea): Every endotactic
(“inward-pointing”) network is persistent. Examples:

•0

3A+B

•2A

B

2B•

A+B 44gg ��

•C

•3C +D•C +D

•2D

77

ww
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I Theorem (Gopalkrishnan, Miller, AS): Every strongly
endotactic network is persistent. Example above on right.



Summary

Chemical reaction systems form a class of dynamical systems
arising in systems biology for which methods from
computational algebra and polyhedral geometry can be harnessed
to prove results about the existence, uniqueness, and stability of
steady states.



Thank you.


