DYNAMICS OF REACTION SYSTEMS

Anne Shiu

University of Chicago

Midwest Women in Mathematics Symposium UIC 20 April 2013

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

OUTLINE OF TALK

- ▶ Chemical reaction systems
- ► Convergence properties
- ▶ Long-term dynamics (persistence)

Main message:

Algebraic and combinatorial techniques are complementary to existing dynamical systems approaches.

ショック 川田 ストット エー・ション

CHEMICAL REACTION NETWORKS

うして ふぼう ふほう ふほう ふしつ

This chemical reaction network has:

- ► r = 3 reactions (with reaction rate constants κ_{ij}) among the ...
- ▶ n = 3 complexes $S_0 + E$, X, and $S_1 + E$ which are comprised of ...
- s = 4 species S_0, S_1, E , and X.

The multisite phosphorylation network

The *n*-site (sequential and distributive) phosphorylation network is:

$$S_{0} + E \stackrel{kon_{0}}{\underset{k \text{off}_{0}}{\overset{k \text{cat}_{0}}{\longrightarrow}}} ES_{0} \stackrel{k \text{cat}_{0}}{\xrightarrow{\rightarrow}} S_{1} + E \stackrel{kon_{1}}{\underset{k \text{off}_{1}}{\overset{k \text{cat}_{1}}{\longrightarrow}}} \rightarrow \dots \rightarrow S_{n-1} + E \stackrel{kon_{n-1}}{\underset{k \text{off}_{n-1}}{\overset{k \text{cat}_{n-1}}{\xleftarrow{\rightarrow}}}} ES_{n-1} \rightarrow S_{n} + E$$
$$S_{n} + F \stackrel{lon_{n-1}}{\underset{l \text{off}_{n-1}}{\overset{k \text{cat}_{n-1}}{\xrightarrow{\rightarrow}}}} FS_{n} \stackrel{l \text{cat}_{n-1}}{\xrightarrow{\rightarrow}} S_{n-1} + F \stackrel{k \text{cat}}{\underset{n-1}{\overset{k \text{cat}_{n-1}}{\xrightarrow{\rightarrow}}}} FS_{1} \stackrel{l \text{cat}_{0}}{\underset{n \text{cat}_{n-1}}{\overset{k \text{cat}_{n-1}}{\xrightarrow{\rightarrow}}}} S_{0} + F$$

Given initial concentrations, how do the concentrations of S_0, S_1, \ldots, E, F evolve in time?

$$c(t) = (c_{S_0}(t), c_{S_1}(t), \ldots, c_E(t), c_F(t))$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

2-SITE PHOSPHORYLATION IN AN OSCILLATOR

Fig. 4. A mathematical model of the KaiABC oscillator predicts entrainment by varying the ATP/ADP ratio. (A) Schematic of a mathematical model for nucleotide-driven entrainment of the KaiABC oscillator. Oscillations occur because the Ser¹³¹-phosphorylated form of KaiC promotes its own production from KaiC phosphorylated at both Ser⁴³¹ and Thr⁴³² through a double-negative feedback loop involving sequestration of KaiA.

(Figure from Rust, Golden, and O'Shea, Light-Driven Changes in Energy Metabolism Directly Entrain the Cyanobacterial Circadian Oscillator, *Science* 2011).

CHEMICAL REACTION SYSTEMS

Fix a chemical reaction network with s species.

- ► Each chemical complex defines a vector $y \in \mathbb{Z}_{\geq 0}^s$ (ex: $S_0 + E$ defines $y_1 = (1, 1, 0)$)
- ► (Guldberg and Waage 1864) According to mass-action kinetics, the concentration vector c(t) = (c₁(t),...,c_s(t)) evolves according to the following differential equations:

$$\frac{d\mathbf{c}}{dt} = \sum_{\substack{y_i \to y_j \\ \text{is a reaction}}} \kappa_{ij} \mathbf{c}^{y_i} (y_j - y_i)$$
Example: $S_0 + E \stackrel{\kappa_{12}}{\underset{\kappa_{21}}{\leftarrow}} X$

$$\frac{dc_{S_0}}{dt} = -\kappa_{12}c_{S_0}c_E + \kappa_{21}c_X$$

$$\frac{dc_E}{dt} = -\kappa_{12}c_{S_0}c_E + \kappa_{21}c_X$$

$$\frac{dc_X}{dt} = \kappa_{12}c_{S_0}c_E - \kappa_{21}c_X$$

MOTIVATION

Question: Is the *n*-site phosphorylation network...

 $1. \ bistable?$

(Answer due to Wang and Sontag 2008: only for $n \ge 2$.)

- 2. convergent to a unique steady state? (Only for n = 1.)
- 3. *persistent*: does every species concentration $c_i(t)$ remain away from 0? (Yes.)

Rest of talk:

How can we answer questions 2 and 3 for arbitrary networks?

うして ふぼう ふほう ふほう ふしつ

COMPLEX-BALANCED SYSTEMS

Idea: amount produced of each complex at steady state = amount consumed; a class of systems that converge to a unique steady state.

▶ Rewrite the mass-action ODEs as:

$$\frac{dc}{dt} = \sum_{\substack{y_i \to y_j \text{ is a reaction}}} \kappa_{ij} (y_j - y_i) c^{y_i} \\
= (c^{\widetilde{y_1}}, \dots, c^{\widetilde{y_n}}) \cdot A_{\kappa} \cdot (\widetilde{y_{ij}})_{i=1\dots n, j=1\dots s} \\
\mathbb{R}^{\#\text{species}} \longrightarrow \mathbb{R}^n \to \mathbb{R}^n \to \mathbb{R}^{\#\text{species}}$$

where $\widetilde{y_1}, \ldots, \widetilde{y_n}$ are the *n* complexes, *s* is the number of species, and A_{κ} is the *Laplacian matrix* of the network.

► (definition, Horn and Jackson 1972) A mass-action kinetics system is a complex-balanced system if there exists a steady state $c^* \in \mathbb{R}^s_{>0}$ with $\left((c^*)^{\widetilde{y_1}}, \ldots, (c^*)^{\widetilde{y_n}} \right) \cdot A_{\kappa} = 0$.

LAPLACIAN MATRIX EXAMPLE

For the following "kinetic proofreading" network:

the Laplacian matrix is:

$$A_{\kappa} := \begin{pmatrix} -\kappa_{12} & \kappa_{12} & 0\\ \kappa_{21} & -\kappa_{21} - \kappa_{23} & \kappa_{23}\\ \kappa_{31} & 0 & -\kappa_{31} \end{pmatrix}.$$

(McKeithan 1995, Sontag 2001)

COMPLEX-BALANCED SYSTEMS, CONTINUED

- Theorem (Craciun, Dickenstein, AS, and Sturmfels 2009): A mass-action kinetics system is a complex-balanced system if and only if the parameters κ_{ij} lie in a certain *toric variety*.
- ▶ Birch's Theorem (1963), Deficiency Zero Theorem (Horn, Jackson, Feinberg 1970s): For complex-balanced systems, there is a *unique steady state* c^* in the relative interior of each forward-invariant polyhedron \mathcal{P} , called the **Birch point**, and it admits a strict Lyapunov function.
- ▶ Example: *"kinetic proofreading" model*

Complex-balanced systems: convergence?

► The Lyapunov function $\sum \left(x_i \log \frac{x_i}{c_i^*} - x_i\right)$ is not sufficient to prove global convergence to the Birch point:

► Global Attractor Conjecture (Horn 1974): For a complex-balanced system with positive initial condition,

 $c(t) \to c^*,$

(日) (日) (日) (日) (日) (日) (日) (日)

for c^* the Birch point of the forward-invariant set \mathcal{P} .

KNOWN CONVERGENCE RESULTS

► A *boundary steady state* is a steady state with at least one zero coordinate:

- ▶ Theorem (Anderson, Craciun, Dickenstein, Nazarov, Pantea, AS, Sturmfels 2007–2012): The Global Attractor Conjecture holds if *boundary steady states are confined to*:
 - vertices of \mathcal{P} ,
 - relative interior points of facets (codim-1 faces) of \mathcal{P} , and
 - relative interior points of codim-2 faces of \mathcal{P} .
- Corollary: The Global Attractor Conjecture holds for when the number of species is ≤ 3 .
- ► See also Johnston and Siegel 2011, siphons (Angeli, De Leenheer, Sontag,...), and monotone systems (Banaji, Hirsch, Smith,...).

New result on convergence and persistence

To prove the GAC, it suffices to prove that complex-balanced systems are **persistent**, that is, for all species *i* and trajectories c(t) with positive initial condition, $\lim_{t \to \infty} \inf c_i(t) > 0$. (Smith, Theime)

 Thus, the GAC generalizes to: Conjecture (Craciun, Nazarov, Pantea): Every endotactic ("inward-pointing") network is persistent. Examples:

うして ふぼう ふほう ふほう ふしつ

► **Theorem** (Gopalkrishnan, Miller, AS): Every *strongly endotactic* network is persistent. Example above on right.

SUMMARY

Chemical reaction systems form a class of dynamical systems arising in systems biology for which methods from *computational algebra and polyhedral geometry* can be harnessed to prove results about the *existence, uniqueness, and stability of steady states.*

ショック 川田 ストット エー・ション

THANK YOU.