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OUTLINE OF TALK

» Chemical reaction systems

» Convergence properties

» Long-term dynamics (persistence)

Main message:
Algebraic and combinatorial techniques are complementary to
existing dynamical systems approaches.



CHEMICAL REACTION NETWORKS

So+ L& S1+FE

This chemical reaction network has:

» r = 3 reactions (with reaction rate constants r;;)
among the ...

» n =3 complexes Sy + F, X, and S; + F
which are comprised of ...

» s =4 species Sy, 51, F, and X.



THE MULTISITE PHOSPHORYLATION NETWORK

The n-site (sequential and distributive) phosphorylation
network is:
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Given initial concentrations,
how do the concentrations of Sy, S1, ..., E, F evolve in time?

ct) = (CSO (t),cs (t), ..., cr(l),cr(t))



2-SITE PHOSPHORYLATION IN AN OSCILLATOR
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Fig. 4. A mathematical model of the KaiABC
oscillator predicts entrainment by varying the
ATP/ADP ratio. (A) Schematic of a mathematical
model for nucleotide-driven entrainment of the
KaiABC oscillator. Oscillations occur because the
Ser**L-phosphorylated form of KaiC promotes its
own production from KaiC phosphorylated at
both Ser*** and Thr**? through a double-negative
feedback loop involving sequestration of KaiA.

(Figure from Rust, Golden, and O’Shea, Light-Driven Changes
in Energy Metabolism Directly Entrain the Cyanobacterial
Circadian Oscillator, Science 2011).



CHEMICAL REACTION SYSTEMS

Fix a chemical reaction network with s species.
» Bach chemical complex defines a vector y € Z%,
(ex: Sp + E defines y; = (1, 1,0)) B
» (Guldberg and Waage 1864) According to mass-action

kinetics, the concentration vector c(t) = (c1(t),...,cs(t))
evolves according to the following differential equations:
dc ,
i Y mie (Y~ v)

Y=Y
is a reaction

K
Example: Sy + E — X

K21
dcg,

¢ = — R12CS,CE + K21CX
dt
dcg
—— = — K12CS,CE + K21Cx
dt
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—; — R12€5,CE — K21CX
dt 0



MOTIVATION

Question: Is the n-site phosphorylation network...

1. bistable?
(Answer due to Wang and Sontag 2008: only for n > 2.)

2. convergent to a unique steady state? (Only for n = 1.)

3. persistent: does every species concentration ¢;(t) remain
away from 07 (Yes.)

Rest of talk:
How can we answer questions 2 and 3 for arbitrary networks?



COMPLEX-BALANCED SYSTEMS

Idea: amount produced of each complex at steady state = amount
consumed; a class of systems that converge to a unique steady state.

» Rewrite the mass-action ODEs as:

dc _
at > Kij (Y — yi) ¥
yi—Y; is a reaction
= (..., Ay (%)i=l...n,j=1...s

R#species R"” SR" — R#species

where 771, ...y, are the n complexes, s is the number of
species, and A, is the Laplacian matriz of the network.

» (definition, Horn and Jackson 1972) A mass-action kinetics
system is a complex-balanced system if there exists a
steady state c* € RS with ((c*)yl, e (c*)y”> “A,.=0.



LAPLACIAN MATRIX EXAMPLE

For the following “kinetic proofreading” network:

A+ B
/{31 F‘:Zl

K12

D C
K23
the Laplacian matrix is:
—K12 K12 0

Agi= | Koa1  —K21 — K23 K23
K31 0 —K31

(McKeithan 1995, Sontag 2001)



COMPLEX-BALANCED SYSTEMS, CONTINUED

» Theorem (Craciun, Dickenstein, AS, and Sturmfels 2009): A
mass-action kinetics system is a complex-balanced system if
and only if the parameters ~;; lie in a certain toric variety.

» Birch’s Theorem (1963), Deficiency Zero Theorem (Horn,
Jackson, Feinberg 1970s): For complex-balanced systems, there
is a unique steady state c* in the relative interior of each
forward-invariant polyhedron P, called the Birch point, and it
admits a strict Lyapunov function.

» Example: “kinetic proofreading” model
(0,1,1,0)
(17 2’ O? 0)

(0,1,0,1)



COMPLEX-BALANCED SYSTEMS: CONVERGENCE?

» The Lyapunov function ) (xz log % — xz> is not sufficient
to prove global convergence to the Birch point:
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» Global Attractor Conjecture (Horn 1974): For a
complex-balanced system with positive initial condition,

c(t) — ¢,

for ¢* the Birch point of the forward-invariant set P.



KNOWN CONVERGENCE RESULTS

> A boundary steady state is a steady state with at least one
zero coordinate:

(0,1,1,0)
D (1.2,0,0)
(0,1,0,1)

» Theorem (Anderson, Craciun, Dickenstein, Nazarov,
Pantea, AS, Sturmfels 2007-2012): The Global Attractor
Conjecture holds if boundary steady states are confined to:

» vertices of P,
» relative interior points of facets (codim-1 faces) of P, and
» relative interior points of codim-2 faces of P.

» Corollary: The Global Attractor Conjecture holds for
when the number of species is < 3.

» See also Johnston and Siegel 2011,

siphons (Angeli, De Leenheer, Sontag,...),
and monotone systems (Banaji, Hirsch, Smith,...).



NEW RESULT ON CONVERGENCE AND PERSISTENCE

To prove the GAC, it suffices to prove that complex-balanced

systems are persistent, that is, for all species ¢ and trajectories

¢(t) with positive initial condition, tlim inf ¢;(t) > 0. (Smith, Theime)
— 00

» Thus, the GAC generalizes to:
Conjecture (Craciun, Nazarov, Pantea): Every endotactic

(“inward-pointing”) network is persistent. Examples:
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» Theorem (Gopalkrishnan, Miller, AS): Every strongly
endotactic network is persistent. Example above on right.




SUMMARY

Chemical reaction systems form a class of dynamical systems
arising in systems biology for which methods from
computational algebra and polyhedral geometry can be harnessed
to prove results about the existence, uniqueness, and stability of
steady states.



THANK YOU.



