
The Geometry of Outer Space Matt Clay notes

1 Introduction

These notes are from a minicourse by Matt Clay at The Geometry of Outer
Space: Investigated through its analogy with Teichmueller space, a confer-
ence held at Aix-Marseille Universite June 24,2013- June 30, 2013. They are
aimed at beginning graduate students with an interest in outer space and in-
tersection numbers. Some knowledge is assumed: the reader should know the
definitions of R−trees, outer space, isometric actions, simple closed curves on
surfaces (these can all be seen in the notes from Thierry Coulbois’ course at
http://www.latp.univ-mrs.fr/~catherine.pfaff/Notes.html), as well
as hyperbolic metrics, geodesics, and splittings (HNN extensions, amalga-
mated free products).

The figures are scanned from Matt’s handwritten notes for the course.

Goal and Outline

Given a finitely generated group G and two R-trees T0, T1 equipped with
isometric actions, we want a space where we can “view” both actions. One
such space is T0 × T1, where G acts diagonally, but this space is “too big”.
Instead, we define the Guirardel core, the smallest subset C ⊂ T0 × T1 that
carries the actions: that is, there are two foliations, such that the vertical is
C ∩ {x0}× T1, and the horizontal is C ∩ T0×{x1}, and T0 is the leaf space of
the vertical foliation while the T1 is the leaf space of the horizontal foliation.

Outline:

• Definition of Guirardel Core

• Properties of the Core

• Examples

• Connections with geometric intersection number

• Applications
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2 Definition of Guirardel Core

Motivating example

Let α, β be simple closed curves on a closed surface S. Assume that α, β fill
S (that is, S − {α ∪ β} is a disjoint union of discs, or equivalently, for all
simple closed curves γ, i(α, γ) + i(β, γ) > 0).

These give Z−splittings on π1(S). If the curves are separating, then we
have an amalgamated free product and π1(S) ∼= π1(S0) ∗Z π1(S1). If the
curves are nonseparating, then the group is an HNN extension and π1(S) ∼=
π1(S0)∗Z.

Bass-Serre theory gives us the dual trees Tα, Tβ. We can concretely de-
scribe these trees using the universal cover S̃, and proceed to do so here. The
figure above shows us what we are taking the dual of: the lifts of α, β.

First fix a hyperbolic metric on S, and realize α and β as geodesics
(remember geodesics are unique in hyperbolic space). Lift these to S̃. The
vertices of Tα are the complementary components of α̃ in S̃, that is, V (Tα) =
S̃ − α̃. The edges of Tα correspond to lifts of α, with the endpoints of α̃0

being the components whose closure contains that lift. We build a similar
graph for Tβ.

Next, we build equivariant maps fα : S̃ → Tα, fβ : S̃ → Tβ. Pick some
small ε > 0 so that ε−neighborhoods of lifts of α do not intersect. Then fα
will map (−ε, ε) × α̃0 → (−ε, ε), while complementary components of these
ε−neighborhoods will map to their corresponding vertices. Similar for β.

Define f = (fα, fβ) : S̃ → Tα × Tβ, by f(x) = (fα(x), fβ(x)), and homo-
tope f so that it is a homeomorphism onto its image.

This allows us to define the core of f : C = f(S̃) ⊂ Tα × Tβ. Note a few
properties of C:

• C is π1S-invariant.

• C is closed and connected.
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• C is fiberwise convex: C ∩ {x0}×Tβ and C ∩Tα×{x1} are connected if
and only if they are convex. In fact, C ∩ {x0} × Tβ = {x0} × TStab(x0),
the minimal subtree of the action of the stabilizer of x0 on Tβ. By
minimal subtree, we mean the smallest subtree of Tβ left invariant by
the action of Stab(x0).

We explain the third property in more detail. If x0 is the midpoint of an
edge in Tα, then its preimage under fα is a particular lift α̃0 inside S̃. This
lift crosses infinitely many lifts of β̃. Each of these lifts become edges in Tβ,
so fβ(f−1

α (x0)) is the line formed by these edges (this is a line since there is
one component between adjacent lifts, which is a vertex in the line). The
third property says that this line is the axis for the subgroup of hyperbolic
isometries generated by Stab(x0), and hence its minimal subtree (since, we
recall, hyperbolic isometries act on their axes by translation and hence leave
the axes invariant).

OK so we have the line, now why would it be the axis? Since α is a
simple closed curve, [α] represents a conjugacy class in π1S. Elements in this
conjugacy class correspond to different lifts α̃. So if an element translates
along a fixed axis, it fixes the particular element of the conjugacy class α̃0.
So it is in the stabilizer Stab(x0). And if an element is in the stabilizer,
then it fixes the conjugacy class, and so fixes the lift, and so must act by
translations on it.

If x0 is a point on an edge in Tα, not necessarily the midpoint, then its
preimage in S̃ is a line at constant distance from a particular lift α̃0, and the
same argument holds.

If x0 is a vertex in Tα, then its preimage under f−1
α is a neighborhood of

S̃. Infinitely many lifts β̃ intersect this neighborhood, and so fβ(f−1
α (x0)) is

3



The Geometry of Outer Space Matt Clay notes

an infinite tree, and the claim is that this tree is the smallest invariant tree
under the action of Stab(x0).

Exercise: Show that C is the smallest (with respect to inclusion) subset
of Tα × Tβ that satisfies these properties.

Each square in C/π1(S) corresponds to an edge eα × eβ ⊂ Tα × Tβ, and
the number of squares is the geometric intersection number of α and β, that
is i(α, β).

Exercise: i(α, γ) = ‖γ‖Tα for any simple closed curve γ. That is, the
intersection number for α and γ is the translation length of γ in the tree Tα.
Note that this is well-defined because intersection number is defined up to
conjugacy class.

Definitions

Given that T0, T1 are R−trees, a direction δ ⊂ T0 based at x0 ∈ T0 is a
complementary component of x0 in T0. A quadrant in T0 × T1 is a product
of directions. If you fix a basepoint ∗ = (∗0, ∗1) ∈ T0×T1, we say a quadrant
Q ⊂ T0×T1 is heavy if there exists a sequence {gk} ⊂ G such that gk.∗ ∈ Q ∀k
and dTi(∗i, gk.∗i)→∞ as k →∞. A quadrant is light if it is not heavy. Note
that this definition is independent of our choice of basepoint. Intuitively, a
quadrant is heavy if there is a sequence of group elements that translates
some basepoint arbitrarily deep in both directions.

Finally, the Guirardel Core is defined as

C = C(T0 × T1) = T0 × T1 − ∪IQ

where I is all of the light quadrants. A few remarks:
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• The core is G-invariant (since heavyness and lightness are).

• The core is closed

• C is fiberwise convex, as C × {x0} ∩ T1, C ∩ T0 × {x1} are connected.

We define the intersection number of two trees by i(T0, T1) = vol(C/G).
This is not necessarily finite.

If T0, T1 are simplicial and we assign 1 to all of the edge lengths, then
i(T0, T1) is the number of squares in the quotient.

Example Consider the action of Z2 on R, so we have both T0, T1 = R,
with the action on T0 given by a(x) = x + 1, b(x) = x, and the swapped
action on T1, so a(x) = x, b(x) = x+1. In this case, every quadrant is heavy,
and C = T0 × T1. Notice also that i(T0, T1) = 1.

Example Next, consider the action by a(x) = x + 1, b(x) = x + r, where
r is some positive real number. Then, again T0 × T1 is the core. Here,
i(T0, T1) = r.

3 Properties of the core

Motivating example

Suppose α, β are simple closed curves on S Now suppose that they have lifts
eα0 , eβ0 that correspond to edges of Tα, Tβ, and the lifts are disjoint in S̃.
The product of these in Tα × Tβ is a square. We claim: eα0 + eβ0 is not in
C(Tα × Tβ).

Since the lifts are disjoint, we can choose a direction δα0 that begins at
the initial vertex of the edge eα0 and contains the edge. We can do a similar
process for δβ0 , so the directions are pointing “away” from each other. Pick
the quadrant Q = δα0 × δβ0 , and note that eα0 + eβ0 ∈ Q. To show that this
square is not in the core, we need only show that Q is a light quadrant.

Pick some basepoint corresponding to a component of S̃ that lies between
the disjoint eβ0 , eα0 . There can be no sequence of elements sending this
basepoint arbitrarily deep in both directions. So Q is light.

Properties

• C(T0 × T1) 6= ∅ if one of Ti is irreducible. This means that there exist
g, h ∈ G that act hyperbolically and the axes Ax(g)∩Ax(h) is compact.
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That is, neither are dihedral nor abelian.

A nonexample: Suppose Z2 acts on R by a(x) = x+ 1, b(x) = x. Then
C(T0 × T0) = ∅, since every point is in a light quadrant.

Another nonexample: If T is simplicial and minimal, and every vertex
has valence ≥ 3, with any finitely generated group acting on it. Then
C(T × T ) = {(v, v) : v ∈ V (T )} is disconnected.

Proof of nonexample: a quadrant δ0×δ1 is light if and only if δ0∩δ1 ⊂ e,
where e is an edge: if Q is not contained in an edge, then it contains an
infinite ray, and so can send something off deeply. And if Q is heavy,
then it can’t be contained in an edge.

• C(T0 × T1) is disconnected if and only if T0 and T1 are refinements of
the same tree T . Ti is a refinement of T if there is a map Ti → T such
that the preimages of points are connected in Ti.

• We can always add “diagonal” edges to make our core connected (we
call this the “augmented core”). These will not affect intersection num-
bers.

• If the lifts α, β do not intersect, then eα × eβ 6∈ C(Tα × Tβ), that is,
there is a light quadrant containing this square. Let δα be the direction
containing eα in Tα − i(eα), and similar for β. Then δα × δβ is light.

Example in Outer Space Consider T0, T1 ∈ CVN . Fix a function f : T0 →
T1 that sends vertices to vertices, is linear on edges, is FN−equivariant, and
is such that f has more than one gate at every vertex: that is, not all
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the images of edges adjacent to a vertex share a common initial segment.
Then f is a quasi-isometry and induces a FN−equivariant homeomorphism
∂f : ∂T0 → ∂T1.

Lemma 1. The quadrant δ0 × δ1 is heavy if and only if ∂f(∂δ0) ∩ ∂δ1 6= ∅.
Here, ∂δi ⊂ ∂Ti are rays that intersect the directions δi in a ray.

Proof. (⇒) Suppose δ0 × δ1 is heavy, so there exists a sequence {gk} ⊂ FN
such that gk(∗0, f(∗0)) ∈ δ0 × δ1 and dT0(∗0, gk.∗0), dT1(f(∗0), gk.f(∗0))→∞
as k →∞, for some basepoint ∗0 ∈ T0.

Pass to a subsequence so that gk.∗0 → X ∈ ∂δ0. Then pass to another
subsequence so we have the same thing in the other direction: gk.f(∗0) →
Y ∈ ∂δ1. By continuity, δf(X) = Y , and so ∂f(∂δ0) ∩ ∂δ1 6= ∅.

(⇐) Suppose ∂f(∂δ0) ∩ ∂δ1 6= ∅. Pick a ray R ∈ ∂δ0 so that f(R) ∈ ∂δ1.
Choose a sequence {gk} ⊂ FN that translates a point ∗0 along R. Since f
is a quasi-isometry, this sequence also translates f(∗0) along the δ1 direction
(since R ⊂ δ1).

A bit of notation: if e ⊂ T is an oriented edge, we say that [e] is the set
of rays that cross e in the same orientation. That is, [e] is the set of infinite
rays that start at i(e), continue through t(e), and go on. This is a one-sided
cylinder. Note that [e], [ē] decompose ∂T into two parts.

Lemma 2. e0 × e1 ∈ C(T0 × T1) if and only if each of the following four
subsets is nonempty:

• ∂f([e0]) ∩ [e1]

• ∂f([ē0]) ∩ [e1]
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• ∂f([ē0]) ∩ [ē1]

• ∂f([e0]) ∩ [ē1]

Proof. Note that for any direction δi that contains ei, ∂δi contains either [e]
or [ē]. Then apply the previous lemma.

We have an alternative way of saying the lemma. e0 × e1 ∈ C if and only
there exist geodesics p+, p− : R→ T0 such that in T0, both geodesics contain
e0 while, after tightening their images to geodesics in T1, e1 separates them
(so one is contained in [e1], and the other in [ē1] This lemma helps us build
the core, allowing us to determine when squares are contained in the core.

Definition. Given an edge e1 ∈ T1, the slice of the core C(T0×T1) above
e1 is Ce1 = {e0 ∈ T0 : e0 × e1 ∈ C(T0 × T1)}. Note that Ce1 is a subtree of T0.

Since FN acts freely on edges, Ce1 ×{x1}, where x1 is the midpoint of e1,
embeds in C/FN .

geodesics.png
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So i(T0, T1) = V ol(C/FN) =
∑

e∈T1/FN lT1(e)volT0(Ce1).
We want to understand the map on the boundaries: ∂f : ∂T0 → ∂T1.

Fix a basepoint ∗0 ∈ T0. Orient edges of the tree to point away from ∗0 and
f(∗0). Let’s describe (∂f)−1([e1]), where e1 is an infinite ray in T1.

Choosing some point x1 ∈ e1, we have that f−1(x1) is a finite set of points
in T0 [f sends vertices to vertices, is FN invariant]. Say these are {p1, . . . , pk},
and each point is in a unique edge qi ∈ T0. We give these points signs: if
f(qi) crosses e1, it has a positive sign and is in I+, otherwise, it crosses ē1

and has a negative sign and is in I−..
Then we define (∂f)−1([e1]) =

∑
i∈I+ [qi]−

∑
j∈I− [qj].

Examples

Example
f : R2 → R2 by f(a) = a, f(b) = a2b. Let T0 = R̃2, T1 = R̃2f . Looking

at T0 compared to T1, the map f shears R̃2 two units to the right: the
a ”coordinate” is fixed, while the b ”coordinate” moves two branches to the
right. In the notation defined above, (∂f)−1([a]) = [a]+[b]+[a−1b]. In words,
(∂f)−1 maps infinite words that start with a homeomorphically to infinite
words that start with a, b or a−1b, and no other initial segments result in a
word that begins with a. Example

Now suppose f : R2 → R2 by f(a) = ab, f(b) = bab. Let’s try to find
(∂f)−1([b]).

Fix a path α from a basepoint in R2 to the midpoint x1 of the b edge.
f−1(x1) = {p1, p2, p3}. Here, p1, p2 are points along the original b edge, since
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f(b) = bab, so assuming constant speed these points land us at x1, and p3 is
a point on the original a edge, since p(a) = ab.

Now we need to find a path from the original basepoint to pi whose image
is homotopic (rel endpoints) to α. The problem being that another path will
be mapped (up to homotopy)to a different lift rather than our specified α.

• For p1, we have b1, a path along b from the basepoint to p1, which is
positive.

• For p2, we have ba−1b−1b1b2 = ba−1b−1
3 , which is negative.

Note here that b1b2 does not work, so this is different from the p1 case.
For f(b1b2) maps to ba, which is not homotopic to α (but is homotopic
to baα, the incorrect lift). So we have to append a word before in order
to map to α and get rid of the extra ba- we need something that maps
to a−1b−1. Inspection gives that f−1(a−1b−1) = ba−1b−1, so we toss
that on at the beginning and get ba−1b−1b1b2. Tracing this through the
graph, we end with negative orientation b−1

3 m and so we end up with
a negative term.

• And for p3, we have ba−1a−1
2 , which is negative. Our reasoning for p3

is similar to that of p2 and is left as an exercise for the reader.

For the actual preimage, we need to consider the full edges inside the span
of the three preimages. So we ”round up” from our half edges, and have
(∂f)−1([b]) = [b]− [ba−1b−1]− [ba−2].

Now let’s find the slices. We have Ce1 = {e0 ∈ T0 : e0×e1 ⊂ C}. We claim
that Cb = ba−1. We use the lemma below, proven by Bestvina, Behrstock,
and Clay. We do not prove it.

Lemma 3. If T0, T1 ∈ CVN , e1 an edge of T1, then Ce1 consists of the interior
edges of the span of f−1(x1), where x1 is the midpoint of e1.

So looking at our preimage of x0, we had (∂f)−1([b]) = [b]− [ba−1b−1]−
[ba−2]. If we draw this on a infinite tree, we see that the interior edges are
ba−1. So Cb = ba−1 ∈ R̃2, as desired.

Now let’s build the core C(R̃2 × R̃2f) for the edge b ∈ R̃2f .
We found the slice Cb above, so now let’s find the slice Ca. We calculate

in a similar way to before that (∂f)−1([a]) = [a]− [ab−1]. Then Ca is just the
vertex a ∈ R̃2, from our lemma above.
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We can draw C(R̃2× R̃2f) ⊂ R̃2× R̃2f : we have a box for Cb, an edge for
Ca, and another two edges to connect the fibers. To find the core, we need
to mod out by the action of FN , which acts by multiplication by a, b on the
left in the first factor, and by f(a), f(b) on the right in the second factor.

For example, the element a2b−1 ∈ F2 sends the point (ba−1, ∗) to (a2b−1ba−1, f(a2)f(b−1)) =
(a, ababb−1a−1b−1) = (a, a). We have another identification of two edges, so
our final C/F2 looks like:

Connection to Geometric Intersection Number

Note that i : CVN×CVN → R≥0 is continuous, however, the natural extension
i : ¯CVN × ¯CVN → R≥0 ∪ {∞} is not.

For a nonexample, suppose f : R2 → R2 by a 7→ a, b 7→ ab. The slice
Cb is empty, while the slice Ca consists of n − 1 edges, the preimage of a
shear by n units to the right. If we consider the intersection number of these
universal covers, we have i(R̃2, R̃2f

n) = n− 1. Note here that the core is not
connected. If we want to get to the boundary of outer space, we must scale
1
n
R̃2f

n, and take the limn→∞, which will lead to a T ∈ ¯CVN .
Now consider the quotient T/F2: it is an HNN extension of < a > with

the stable letter b. Why? Consider the length of the images of a, b as n→∞
under the iterated 1

n
fn. Since a 7→ a, the length of its image goes to 0, while

b 7→ ab means fn(b) = aaa ·ab and so the length of its image under 1
n
fn goes

to 1.
Since R̃2 → T is a refinement, i(R̃2, T ) = 0, while i(R̃2,

1
n
R̃2f

n)→ 1. So
i is not continuous.
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Theorem 1. i(T0, T1) = 0 if and only if there exists a common refinement
T → Ti, where point preimages are connected.

We can read this theorem as saying that if the core has no area, then it
is the common refinement T , and vice-versa.

Whitehead Model, Sphere Systems Definitions

Let’s think of a 3- manifold MN as the connected sum of N copies of S1×S2,
or as the double of a handlebody of genus N , glued along their boundaries by
the identity map. By Van Kampen’s theorem, π1(MN) = FN . Yet another
way to think of MN is by using Whitehead’s model, where we can think of it
as S3 with the interior of 2N disjoint balls cut out of it. Match each ball with
a mate, and then identify the boundaries of these balls (reversing orientation
in the identification map).

If we collapse these balls, we get the Whitehead graph. Suppose A =
{a1, . . . , an} is an alphabet, and g a cyclically reduced word x1 . . . xk. Then
WhA(g) is a graph with 2n vertices, labeled a±i , and with an edge from x−1

to y for each subword xy contained in g, considered cylically. For instance,
ab−1 would have an edge from a+ to b+ and another from b− to a−.

The Whitehead graph has many interesting applications, and we give an
example of one here without proof:

Theorem 2. If g is primitive, then WhA(g) is disconnected or has a cut
vertex.

We can define a Dehn twist about a 2-sphere (the boundary of these
matched balls) by taking a neighborhood S2 × I of the sphere, and then
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rotating the sphere S2 × {t} by 2πt. Note that any curve that meets the
sphere, then twists, can be homotoped back to its original state. So Dehn
twists act trivially on π1(MN). The next theorem says these twists are all
the diffeomorphisms that do so.

Theorem 3 (Laudenbach). The natural map from the mapping class group
to Out(FN), is surjective and has a finite kernel, which is a direct sum of N
copies of Z2, generated by Dehn twists about the 2-pheres in MN .

Recall that we can think of Map(MN) as π0(Diffeo+(MN)).
Now a sphere system in MN is a collection of disjoint embedded 2-spheres,

no two of which are non-isotopic, and none of which bound a 3-ball. Let
S(MN) denote the isotopy classes of sphere systems. There is a bijection
between S(MN) and automorphisms of FN acting on simplicial trees. We
have a similar lemma.

A free splitting of FN is a minimal simplicial action of FN on a tree, where
edge stabilizers are trivial.

Lemma 4 (Aramoyena-Souto). There exists a bijection between S(MN) and
free splittings FS(FN)

Proof. Given a sphere system Σ, consider the lifts Σ̃ in M̃N . Build the dual
tree TΣ as we did earlier, in our example with simple closed curves. So
vertices are the components of M̃N − Σ̃, while edges are the lifts Σ̃, with
endpoints where you think they are. This gives a free splitting of FN .

For the other direction, given an action of FN on T which is minimal,
simplicial, and has trivial edge stabilizers, we want to build a sphere system
with an equivariant map f : M̃N → T . If we consider f−1(x0), where x0 is
the midpoint of an edge, and then do surgeries on this graph so that these
preimages are spheres, we have the desired sphere system.

Intersection number and Sphere systems

Given two sphere systems Σ0,Σ1, define their intersection number i(Σ0,Σ1)
as the minimum number of components of Σ′0 ∩ Σ′1, where Σ′i is a represen-
tative of the isotopy class Σi.

This next proposition is the main goal of this section.

Proposition 1 (Horbey). i(TΣ0 , TΣ1) = i(Σ0,Σ1).
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To prove this proposition, we need a quick definition. We say a sphere
system is in Hatcher normal form if, for any component P ⊂MN −Σ1, each
component of Σ0 ∩ P is one of the following:

• A disk separating 2 spheres in ∂P

• A cylinder with boundary consisting of two spheres in ∂P

• A pair of pants with the boundary contained in three spheres

Proof. Combine our two maps fΣi : M̃N → TΣi to form f = f(fΣ0 , fΣ) :
M̃N → TΣ0 × TΣ1 .

Under this map, squares in f(M̃N) correspond to an intersection circle
in S0 ∩ S1, where Si are spheres in Σ̃i. Since the core is minimal, this set
of squares, f(M̃N)m contains the core. Then take the quotient of this by
FN , and we have that f(M̃N)/FN ⊃ C/FN . So by definition, i(TΣ0 , TΣ1) ≤
i(Σ0,Σ1).

For the other direction, it is a fact that Σ0 and Σ1 intersect minimally
when they are in Hatcher normal form. Assume that Σi are maximal, so
their complementary components are 3-spheres with the interiors of disjoint
3-balls removed. So if Si ∈ Σ̃i, S0 ∩ S1 has at most one circle in M̃N . If this
circle exists, then the four regions of M̃N − S0 ∩ S1 are all unbounded. Then
the square eS0 × eS1 ⊂ C, as every quadrant containing it is heavy.

Applications

Theorem 4 (Guirardel). If φ ∈ Out(FN) is an iwip and its attracting and
repelling trees T± are geometric, then φ has a psseudo-Anosov on a surface
representation. In this case, the core C ⊂ T+×T−, and the quotient C/FN is
a surface with marked points for the boundary.

Theorem 5 (Handel-Mosher, Behrstock-Bestvina-Clay). If φ ∈ Out(FN) is
fully irreducible, T+ is geometric, and T− is not, then λρ > λρ−1, where these
represent the growth rates.

The proof of this second theorem comes from understanding the relation-
ship between intersection number and growth rates.
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