
Young Geometric Group Theory Haglund notes

1 Right Angled Coxeter Groups (RACGs) and

the Davis complex

1.1 Definition and Examples

Definition 1. If G is a simplicial graph on a set of S elements, then W =
〈s ∈ S : st = ts if (s, t) ∈ E(G)〉 is a right angled Coxeter group.

Examples

• If G is the complete graph on S, then W = (Z/2Z)|S|.

• If G has no edges, then W = Z/2Z ∗ · · · ∗Z/2Z, the free product of |S|
copies of Z2.

• (Geometric example) Let P be a right angled (normal vectors to faces,
after translating to the origin, are orthogonal)polyhedron (the convex
hull cut out by k hyperplanes) in Rn or Hn. Let W = 〈sH : H hyper-
planes through codim 1 facets 〉. Then W is a RACG, where each sH
represents a reflection.

Exercise: The class of RACGs is stable under direct products and free
products.

1.2 Geometric Representation

We define a bilinear form on R|S| by B(es, et) =


1 s = t

0 (s, t) ∈ E(G)

−1 else

, where

es, et denote the usual basis elements.
Set δs : R|S| → R|S| by U 7→ U − 2B(u, es)es. This sends eS to -1, et to et

if there is an edge between them, and et to et + 2es if there is not [this seems
weird...]

If (s, t) ∈ E(G), then [δs, δt] = 1. So s 7→ δs gives a representation from
W to GL(R|S|).

Theorem 1. (Tits) This representation is faithful.

From this theorem and the next, we derive the corollary.
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Theorem 2. (Mol’cov) Every finitely generated subgroup of GL(n;R) is
residually finite.

Corollary 1. Every RACG is residually finite.

Recall that

Definition 2. A group G is residually finite if these equivalent conditions
hold:

1. For all g 6= 1, there exists a finite quotient p : G → Ḡ such that
p(g) 6= 1.

2. For all finite subsets F ⊂ G, there exists a map p : G → Ḡ, where Ḡ
is finite, such that p is injective on F .

1.3 The Davis Complex

Definition 3. The Cayley graph of W with respect to S, Cayley(W,S) is
built as such: the vertex set is W , and there is one nonoriented edge between
(w,ws).

Examples

• G is a vertex. Then Cayley(W,S) is a single edge, with one vertex
labeled 1 and another labeled s.

• G is a single edge between s, t. Then Cayley(W,S) is a square with
corners 1, s, t, st = ts.

• G is a set of vertices with no edges. Then Cayley(W,S) is an infinite
tree with valence |S|.

Lemma 1. Suppose we have a subset T ⊂ S such that for all t1, t2 ∈ T ,
there is an edge between them in G (that is, T is a clique in G). Let WT =

〈t : t ∈ T 〉 ⊂ W . Then WT is embedded and Cayley(Z|T |
2 , T )→Cayley(W,S)

is an embedding.

Sketch of proof: There’s a natural map of (Z2)
|T | → WT . There’s also

a retraction of W to (Z2)
|T | by t 7→ t, u 6= t 7→ 1. Now WT ⊂ W is easy,

while following the retraction and natural map shows that it’s an embedding.
[thought I understood this but I guess not].
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The lemma implies that there’s a lot of cubes in any Cayley graph of a
RACG.

Finally, we iteratively construct the CW-Davis complex of a RACG.
D(1) is Cayley(W,S).
D(2): for each edge (s, t) ∈ E(G), for each g ∈ W , add a square along the

boundary 4-cycle (g, gs, gst = gts, gt).
D(n+1): for each (k + 1) clique in G, add in copies of [0, 1]n+1, with one

for each g ∈ W .

2 CAT(0) cube complexes

Definition 4. A cube complex X is a CW complex build inductively.
X(0) is a discrete set, while X(1) is a graph on X(0). To be precise, X1

is X0 with attached 1-cells, which are copies of [0, 1], attached by ∂[0, 1] =
〈0, 1〉 → X0.

Now X(k+1) is X(k) with attached k+ 1-cells, [0, 1]k+1, which are attached
by combinatorial maps.

We implicitly defined cubes above
TO BE FINISHED ALMOST THERE there’s like 20 % of the lecture

left.
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