Young Geometric Group Theory Haglund notes

1 Right Angled Coxeter Groups (RACGs) and
the Davis complex

1.1 Definition and Examples

Definition 1. If G is a simplicial graph on a set of S elements, then W =
(s € S:st=tsif (s,t) € E(Q)) is a right angled Coxeter group.

EXAMPLES
e If G is the complete graph on S, then W = (Z/27)!5].

e If G has no edges, then W = Z/27 x - - - x 7L /27, the free product of |5]|
copies of Zs.

e (Geometric example) Let P be a right angled (normal vectors to faces,
after translating to the origin, are orthogonal)polyhedron (the convex
hull cut out by k hyperplanes) in R™ or H". Let W = (sy : H hyper-
planes through codim 1 facets ). Then W is a RACG, where each sy
represents a reflection.

Ezxercise: The class of RACGs is stable under direct products and free
products.

1.2 Geometric Representation

1 s=t
We define a bilinear form on Rl by B(eg, e,) =<0 (s,t) € E(G), where
—1 else

es, €; denote the usual basis elements.

Set 6, : RISl — RIS by U +— U — 2B(u, e,)e,. This sends eg to -1, e; to e,
if there is an edge between them, and e; to e; 4 2¢; if there is not [this seems
weird...]

If (s,t) € E(G), then [0s,d:] = 1. So s +— 0, gives a representation from
W to GL(RI®).

Theorem 1. (Tits) This representation is faithful.

From this theorem and the next, we derive the corollary.
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Theorem 2. (Mol’cov) Every finitely generated subgroup of GL(n;R) is
residually finite.

Corollary 1. Every RACG is residually finite.
Recall that

Definition 2. A group G is residually finite if these equivalent conditions
hold:

1. For all g # 1, there exists a finite quotient p : G — G such that
plg) # 1.

2. For all finite subsets F C G, there exists a map p : G — G, where G
1s finite, such that p is injective on F'.

1.3 The Davis Complex

Definition 3. The Cayley graph of W with respect to S, Cayley(W,S) is
built as such: the vertexr set is W, and there is one nonoriented edge between
(w, ws).

EXAMPLES

e (G is a vertex. Then Cayley(WV,S) is a single edge, with one vertex
labeled 1 and another labeled s.

e (G is a single edge between s,t. Then Cayley(W,S) is a square with
corners 1,s,t, st =ts.

e (G is a set of vertices with no edges. Then Cayley(W,S) is an infinite
tree with valence |S].

Lemma 1. Suppose we have a subset T' C S such that for all t1,ty € T,
there is an edge between them in G (that is, T is a clique in G). Let Wy =
(t:teT)CW. Then Wy is embedded and Cayley(Z‘QT‘, T) — Cayley(W, S)
15 an embedding.

Sketch of proof: There’s a natural map of (Z,)"l — Wy. There’s also
a retraction of W to (Zy)"l by t + t,u # t + 1. Now Wy C W is easy,
while following the retraction and natural map shows that it’s an embedding.
[thought T understood this but I guess not].

2
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The lemma implies that there’s a lot of cubes in any Cayley graph of a
RACG.

Finally, we iteratively construct the CW-Davis complex of a RACG.

DW is Cayley (W, S).

D@): for each edge (s,t) € E(G), for each g € W, add a square along the
boundary 4-cycle (g, gs, gst = gts, gt).

DFD: for each (k + 1) clique in G, add in copies of [0, 1]"*!, with one
for each g € W.

2 CAT(0) cube complexes

Definition 4. A cube complex X is a CW complex build inductively.

X© s a discrete set, while XV is a graph on X©. To be precise, X*
is X° with attached 1-cells, which are copies of [0,1], attached by 9[0,1] =
0,1) — X°.

Now X 1) is X®) with attached k+ 1-cells, [0, 1]¥*!, which are attached
by combinatorial maps.

We implicitly defined cubes above
TO BE FINISHED ALMOST THERE there’s like 20 % of the lecture
left.



