1 Right Angled Coxeter Groups (RACGs) and the Davis complex

1.1 Definition and Examples

Definition 1. If G is a simplicial graph on a set of S elements, then $W = \langle s \in S : st = ts \text{ if } (s,t) \in E(G) \rangle$ is a right angled Coxeter group.

EXAMPLES

- If G is the complete graph on S, then $W = (\mathbb{Z}/2\mathbb{Z})^{|S|}$.
- If G has no edges, then W = Z/2Z * · · · * Z/2Z, the free product of |S| copies of Z₂.
- (Geometric example) Let P be a right angled (normal vectors to faces, after translating to the origin, are orthogonal)polyhedron (the convex hull cut out by k hyperplanes) in \mathbb{R}^n or \mathbb{H}^n . Let $W = \langle s_H : H$ hyperplanes through codim 1 facets \rangle . Then W is a RACG, where each s_H represents a reflection.

Exercise: The class of RACGs is stable under direct products and free products.

1.2 Geometric Representation

We define a bilinear form on $\mathbb{R}^{|S|}$ by $B(e_s, e_t) = \begin{cases} 1 & s = t \\ 0 & (s, t) \in E(G), \text{ where} \\ -1 & \text{else} \end{cases}$

 e_s, e_t denote the usual basis elements.

Set $\delta_s : \mathbb{R}^{|S|} \to \mathbb{R}^{|S|}$ by $U \mapsto U - 2B(u, e_s)e_s$. This sends e_S to -1, e_t to e_t if there is an edge between them, and e_t to $e_t + 2e_s$ if there is not [this seems weird...]

If $(s,t) \in E(G)$, then $[\delta_s, \delta_t] = 1$. So $s \mapsto \delta_s$ gives a representation from W to $GL(\mathbb{R}^{|S|})$.

Theorem 1. (*Tits*) This representation is faithful.

From this theorem and the next, we derive the corollary.

Theorem 2. (Mol'cov) Every finitely generated subgroup of $GL(n; \mathbb{R})$ is residually finite.

Corollary 1. Every RACG is residually finite.

Recall that

Definition 2. A group G is residually finite if these equivalent conditions hold:

- 1. For all $g \neq 1$, there exists a finite quotient $p : G \rightarrow \overline{G}$ such that $p(g) \neq 1$.
- 2. For all finite subsets $F \subset G$, there exists a map $p: G \to \overline{G}$, where \overline{G} is finite, such that p is injective on F.

1.3 The Davis Complex

Definition 3. The Cayley graph of W with respect to S, Cayley(W,S) is built as such: the vertex set is W, and there is one nonoriented edge between (w, ws).

EXAMPLES

- G is a vertex. Then Cayley(W, S) is a single edge, with one vertex labeled 1 and another labeled s.
- G is a single edge between s, t. Then Cayley(W, S) is a square with corners 1, s, t, st = ts.
- G is a set of vertices with no edges. Then Cayley(W, S) is an infinite tree with valence |S|.

Lemma 1. Suppose we have a subset $T \subset S$ such that for all $t_1, t_2 \in T$, there is an edge between them in G (that is, T is a clique in G). Let $W_T = \langle t : t \in T \rangle \subset W$. Then W_T is embedded and $Cayley(\mathbb{Z}_2^{|T|}, T) \rightarrow Cayley(W, S)$ is an embedding.

Sketch of proof: There's a natural map of $(\mathbb{Z}_2)^{|T|} \to W_T$. There's also a retraction of W to $(\mathbb{Z}_2)^{|T|}$ by $t \mapsto t, u \neq t \mapsto 1$. Now $W_T \subset W$ is easy, while following the retraction and natural map shows that it's an embedding. [thought I understood this but I guess not]. The lemma implies that there's a lot of cubes in any Cayley graph of a RACG.

Finally, we iteratively construct the CW-*Davis complex* of a RACG. $D^{(1)}$ is Cayley(W, S).

 $D^{(2)}$: for each edge $(s,t) \in E(G)$, for each $g \in W$, add a square along the boundary 4-cycle (g, gs, gst = gts, gt).

 $D^{(n+1)}$: for each (k+1) clique in G, add in copies of $[0,1]^{n+1}$, with one for each $g \in W$.

2 CAT(0) cube complexes

Definition 4. A cube complex X is a CW complex build inductively.

 $X^{(0)}$ is a discrete set, while $X^{(1)}$ is a graph on $X^{(0)}$. To be precise, X^1 is X^0 with attached 1-cells, which are copies of [0,1], attached by $\partial[0,1] = \langle 0,1 \rangle \to X^0$.

Now $X^{(k+1)}$ is $X^{(k)}$ with attached k+1-cells, $[0,1]^{k+1}$, which are attached by combinatorial maps.

We implicitly defined cubes above

TO BE FINISHED ALMOST THERE there's like 20 % of the lecture left.