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STAT381 Lia Liu

Chap 3: Continuous Probability Models

List of topics: Section 3.1

1. Continuous random variable: a random variable that takes
values of an entire interval.

2. A function f(y) is a probability density function of a continu-
ous random variable (in short pdf) for some random vari-
able Y if it satisfies two conditions:

1) f(y) ≥ 0;

2)
∫∞
−∞ f(y)dy = 1

3. Distribution function of a random variable(in short, DF):

F (y) = P (Y ≤ y), −∞ < y <∞
Note: F (−∞) = 0, F (∞) = 1, F is increasing(nondecreasing).

4. Probability Density function of a continuous random vari-
able (in short pdf):

f(y) = F ′(y)

5. How to compute probability?

1) using pdf: P (a ≤ Y ≤ b) =
∫ b
a f(y)dy

2) using DF: P (a ≤ Y ≤ b) = F (b)− F (a)

Note the difference between discrete and continuous r.v.:
If Y is a continuous r.v., then

P (a ≤ Y ≤ b) = P (a < Y ≤ b) = P (a < Y < b) = P (a ≤ Y < b)
because P (X = a) = 0(area of a line segment).

6. Expected value µ = E(X) =
∫∞
−∞ xf(x)dx

Variance σ2 = V (X) = E(X − µ)2 = E(X2)− µ2

Standard deviation σ =
√
V (X)
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Sections 3.2

List of topics: Normal Distribution

1. A continuous rv is said to have a normal distribution with
parameters mean µ and standard deviation σ, where −∞ <
µ <∞ and σ > 0, if the pdf of X is

f(x) =
1√
2πσ

e−(x−µ)2/(2σ2), −∞ < x <∞

2. Standard normal: when µ = 0 and σ = 1.

3. How to compute probability of a Standard Normal rv us-
ing Table C4? TI-83 or TI-84? P (a < Z < b) = normalcdf(a, b)

4. How to compute probability of any Normal rv using Table
C4? Standardize or P (a < X < b) = normalcdf(a, b, µ, σ)

5. The Empirical Rule (68-95-99.7 rule):

If a rv Y satisfies a Normal Distribution with mean µ and
standard deviation σ, then

1) The probability that Y is within one standard deviation
from the mean

=P (|Y − µ| ≤ σ) is roughly 68%;

2) The probability that Y is within two standard deviation
from the mean

=P (|Y − µ| ≤ 2σ) is roughly 95%;

3) The probability that Y is within three standard devia-
tion from the mean

=P (|Y − µ| ≤ 3σ) is roughly 99.7%;

6. How to use Normal to approximate Binomial distribu-
tion? Half unit correction
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Sections 3.3

List of topics: Other Cont. Distribution

First let us look at a type of questions concerning the life
time of something(e.g. human life, lifetime of a light bulb,
TV set, etc.). We’ll derive the formula so you can understand
where the pdf came from.

Let a continuous rv X represent the length of life of a com-
ponent(e.g. human life, lifetime of a light bulb, TV set, etc.),
and assume X has pdf f(x) and CDF F (x).

From Calculus, we have

P (x < X < x+ ∆x|X > x) =
P (x < X < x+ ∆x)

P (X > x)
≈ f(x)∆x

1− F (x)

Let λ(x) =
f(x)

1− F (x)
, λ(x) is called the failure rate function.

Let’s see how the failure rate function is related to the pdf
and CDF.

Take a integral to λ(x), we have

∫ x
0 λ(x)dx =

∫ x
0

f(x)

1− F (x)
dx by substitution,

∫ x
0 λ(x)dx = − ln[1− F (x)]. Now solve for F :

F (x) = 1− e−
∫ x
0
λ(x)dx.

So f(x) = λe−
∫ x
0
λ(x)dx.

Now we can find out what the pdf is if we know what is the
failure rate function.

If the parts “wear out”, the lifetime deteriorates over time(e.g.
human life, lifetime of a light bulb, TV set, etc.), then the fail-
ure rate λ(x) is increasing according to time x. What kind of
increasing function do you know? Power, exponential, log,
etc.

When we pick a power function, we call the distribution“Weibull”.
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when we pick an exponential function, we call it“Gompertz”.

If the old is just as good as new, we say it has no memory.
Then the Failure rate is a constant. Our distribution is then
called Exponential distribution. We use

1. 3.3.1. Weibull Distribution: A continuous rv X is said to
have a Weibull Distribution with parameters α and β, if the
pdf of X is

f(x;α, β) =
α

βα
xα−1e−(x/β)α, x ≥ 0

2. 3.3.2. Gompertz distribution:

If the parts has no memory, then λ(x) = constant. The
distribution is exponential.

If it increase like a power function, match the constant,
we get a Weibull distribution (so λ(x) = αxα−1/βα)

Human mortality (failure rate) increases exponentially
once a person reaches mid twenties.

λ(x) = cebx

The distribution is called Gompertz.

3. 3.3.4. Gamma Distribution: A continuous rv X is said to
have a gamma distribution with parameters α and β, if the
pdf of X is

f(x;α, β) =
1

βαΓ(α)
xα−1e−(x/β), x ≥ 0

4. Γ(α) is called gamma function which is defined by

Γ(α) =
∫∞
0 xα−1e−x, α > 0

5. Properties of a gamma function:

• Recursive: For any a > 1,Γ(a) = (a− 1) · Γ(a− 1)

• For any positive integer n, Γ(n) = (n− 1)!

• Γ(1/2) =
√
π
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• The mean and variance of r.v X with a gamma distri-
bution is

E(X) = µ = αβ; V (X) = σ2 = αβ2

The gamma distribution is used to model the waiting
time until kth occurrence. If λ is the mean number of
occurrences in an interval of length 1, then the waiting
time until kth occurrence is Gamma distribution with
α = k, β = 1/λ

6. Special case I: Exponential distribution: Waiting time be-
tween any two occurrences is Gamma distribution with
α = 1, β = 1/λ

pdf of an exponential rv, X, is

f(x;λ) = λe−λx, x ≥ 0

The mean waiting time is 1/λ.

We usually use exponential distribution to model waiting
time between two occurrences, if the process is memoryless.

7. Special case II: 3.3.5. Chi-square distribution: is Gamma
distribution with α = v/2, β = 2. We shall see it later on.

8. 3.3.6. Lognormal distribution: A continuous rv X is said
to have a Lognormal Distribution with parameters µ and σ,
if the pdf of X is

f(x;µ, σ) =
1√

2πσx
e−(ln(x)−µ)2/(2σ2), x ≥ 0

If Y has a Normal distribution N(µ, σ2), then X = eY has
a lognormal distribution.

How to derive the pdf of X?

F (x) = P (X ≤ x) = P (eY ≤ x) = P (Y ≤ lnx) =
∫ lnx

−∞
ce−

(t−µ)2

2σ2 dt

f(x) = d
dxF (x)

9. Model that relates Poisson distribution, Gamma distribu-
tion and Exponential distribution:
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If the process is “memoryless”, i.e. the number of occur-
rences depends only on the length of the time interval,
not the beginning point; in another word, the distribu-
tion of the number of occurrences over [0, x] is the same
as [k, k + x] for any k:

Another way to derive it:

• Then let W = the number of occurrences during [0, x], let
λ= average rate of occurrences during unit time inter-
val.

Then W has a Poisson distribution with mean E(W ) =
λx

(i.e. the pdf of W is fW (w) = e−λx
(λx)w

w!
, w = 0, 1, 2, ...)

• Let X be the waiting time between any two occurrences

The X has an Exponential distribution with mean 1/λ.

Proof: FX(x) = P (X ≤ x) = 1− P (X > x)

= 1− P (zero occurrence during [0, x])

= 1− P (W = 0) = 1− e−λx

fX(x) = F ′ = λe−λx, x > 0

• Let Y be the length of time until rth occurrence. Then Y

satisfies a Gamma distribution.

Proof: Same idea: FY (y) = P (Y ≤ y) = 1− P (Y > y)

= 1− P (W ≤ r − 1) = 1− Σr−1
w=0e

(−λy) (λy)w

w!
Take derivative term by term:

fY (y) = λr

(r−1)!y
r−1e−(λy), y > 0
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Sections 3.5 Dist of 2 cont. r.vs

Print out the extra problems for double integral on my
webpage.

List of topics:

1. Continuous case: Joint density

fX,Y (x, y)

Note: This f is not a probability. However,

(1) f ≥ 0;

(2)
∫ ∫

R2
f(x, y)dxdy = 1

(3) P [(x, y) ∈ A] =
∫ ∫

Af(x, y)dxdy

2. CDF of X and Y :

FX,Y (x, y) = P [(X ≤ x)
⋂

(Y ≤ y)]

3. Continuous case: Joint density

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y

(2nd mixed partial derivative)

4. Marginal pdfs: fX(x) =
∫ ∞
−∞

f(x, y)dy

5. Expectations:

E(u(X, Y )) =
∫ ∫

R2
u(x, y)f(x, y)dxdy

6. Conditional pdf is the ratio of joint pdf to marginal pdf.

Continuous case: fX|Y (x|y) =
fX,Y (x, y)

fY (y)
, fY (y) > 0

7. Conditional expectation: E(u(Y )|x) =
∫∞
−∞ u(y)fY |X(y|x)dy

(which is a function of x.)

Hence E(Y |X) is a random variable of X.

8. Covariance of X and Y :

cov(X, Y ) = E[(X − µX)(Y − µY )] (easier to understand)

cov(X, Y ) = E(XY )− µXµY (easier for calculation)
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9. Correlation coefficient ρ =
cov(X, Y )

σXσY

How can you tell X and Y are independent r.v.s?

1. Equivalent conditions: X and Y are independent iff

(1) By pdf: fX,Y (x, y) ≡ fX(x)fY (y) (note the regions.)

(2) By CDF: F (x, y) = FX(x)FY (y) for all (x, y)

(3) By MGF: M(t1, t2) = M(t1, 0)M(0, t2) (Not covered in
stat381)

2. How can you tell two r.v. X and Y are independent by
joint density?

Region and function

3. What happens to covariance(and corelation coefficient) if
X and Y are independent?

If X and Y are independent, then Cov(X, Y ) = 0, hence
ρ = 0.

However, if Cov(X, Y ) = 0, or ρ = 0, X and Y may not be
independent.

Facts:

• −1 ≤ ρ ≤ 1

• ρ = ±1 implies“perfect linear relationship between X

and Y .”

• ρ = 0 implies “No linear relationship between X and
Y (but can be quadratic, for example).”

• ρ > 0 means X and Y are positively related (If X in-
creases, so is Y ).

• ρ < 0 means X and Y are negatively related (If X

increases, Y decreases).

• If X and Y are independent, then Cov(X, Y ) = 0, hence
ρ = 0.

However, if Cov(X, Y ) = 0, or ρ = 0, X and Y may not
be independent.
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• Special case: If X and Y are normal, then Cov(X, Y ) =
0, or ρ = 0 implies “X and Y are independent.”
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Section 4.1 Sampling distribution and the CLT

List of topics:

Given n rv’s X1, X2, ..., Xn (not necessarily random sample).
We consider linear combination

Y = a1X1 + a2X2 + ...+ anXn

1. Expectation is linear: E(Y ) = a1E(X1) + a2E(X2) + ... +
anE(Xn)

2. Variance is not linear, but we still have

V (Y ) = Σn
i=1Σ

n
j=1aiajCov(Xi, Xj)

= a1
2V (X1) + a2

2V (X2) + ... + an
2V (Xn) + 2a1a2Cov(X1, X2) +

...+ 2an−1anCov(Xn−1, Xn)

3. In case Xi’s are independent, all covariances are zero.

V (Y ) = a1
2V (X1) + a2

2V (X2) + ...+ an
2V (Xn)

4. Example: E(X1 −X2) = E(X1)− E(X2);

V (X1 −X2) = V (X1) + V (X2)− 2Cov(X1, X2);

If X1, X2 are independent, V (X1 −X2) = V (X1) + V (X2)

5. Example: X1 is a rv with Binomial B(n,p);

X2 is a rv with Poisson λ;

X3 is a rv with Normal N(µ, σ2);

Suppose Xi’s are independent for i = 1, 2, 3.

Find E(X1 + 2X2 − 3X3); V (X1 + 2X2 − 3X3);

E(X1 +X2 +X3); V (X1 +X2 +X3);

E(
X1 +X2 +X3

3
); V (

X1 +X2 +X3

3
);

6. Stable distributions:

Normal, Binomial, Poisson, Chi-square.

Not stable: Exponential

7. Independent and identically distributed random variables(i.i.d.)
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8. random sample (iid)

9. Sample mean X, E(X), V (X)

10. Sample sum Sn = X1 +X2 + ...+Xn, what is E(Sn)? V (Sn)?

11. Central Limit Theorem: Roughly speaking, no matter
what is the population distribution, as long as the sample
size is large, the sample mean and the sample sum are
normal.

Let X1, X2, ... be iid’s, each with mean µ and standard de-
viation σ, (both finite), then

Part 1)
X − µ
σ/
√
n
→ N(0, 1) as n→∞

Part 2)
Sn − nµ
σ
√
n
→ N(0, 1) as n→∞
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Sections 4.2-4.6 Confidence Intervals

List of topics: Given a random sample X1, X2, ..., Xn from the
same distribution with unknown parameters. What can we
say about the unknown parameter?

• confidence interval: estimate ± Margin of error

How?

• Choice of test statistic. Why?

• What can/cannot you say?

1. Given a random sample from a Normal population with
unknown µ (Given standard deviation σ), what can you
say about µ?

Use z test: Z = X−µ
σ/
√
n

The 1− α CI for µ is x± zα/2
σ√
n

The estimate for µ is X , zα/2
σ√
n

is the margin of error.

Notice that the margin of error is z∗ times the standard
deviation of X.

What about 2 samples?

2. Given a random sample from a Normal population with
unknown µ and unknown standard deviation σ, , what can
you say about µ?

Use t test: T = X−µ
S/
√
n

has t distribution with n− 1 degree of
freedom.

The 1− α percent CI for µ is x± tα/2,n−1
s√
n

What about 2 samples? µ1 − µ2

3. Large Population: Normal with unknown µ and unknown
σ. (n > 40)

Use z test: Z ≈ X−µ
S/
√
n
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The 1− α percent CI for µ is x± zα/2
s√
n

4. Population: Binomial with unknown population propor-
tion p.

When n is large (np ≥ 10, nq ≥ 10), Choose test statistics:
Ŷ = Y/n, where Y is the number of heads out of n tosses.

Use Z- test: Z ≈ p̂− p√
p̂q̂/n

5. Two populations: p1 − p2 :Bernoulli trials: under proper
assumptions,

p̂1 − p̂2 has mean p1 − p2 and SD
√p1q1

n1
+ p2q2

n2

6. Standard deviation is usually the trouble-maker because it
is usually unknown. We shall use various defined standard
errors to approximate.

7. To find confidence interval for p1 − p2, use ”hats” to ap-
proximate:

SE(p̂1 − p̂2) =
√
p̂1q̂1
n1

+ p̂2q̂2
n2

8. To do hypothesis testing, e.g

H0 : p1 − p2 = 0

Use pooled standard error

SEpooled(p̂1 − p̂2) =
√
p̂pooledq̂pooled(

1
n1

+ 1
n2

),

where p̂pooled = n1p̂1+n2p̂2
n1+n2

When n is large enough to use Z-test, the z-score is Z =
(p̂1−p̂2)−0

SEpooled(p̂1−p̂2). Then according to HA hypothesis, compute
the corresponding P-value.

9. Given a random sample from a Normal population with
unknown µ and unknown standard deviation σ, , what can
you say about σ2?

Use χ2 test: χ2 = (n−1)S2

σ2 has χ2 distribution with n − 1
degree of freedom.
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The 1− α CI for σ2 is ( (n−1)S2

χ2
α/2,n−1

, (n−1)S2

χ2
1−α/2,n−1

)

Construction process:

1. Z-test: Let P (−zα/2 < X−µ
σ/
√
n
< zα/2) = 1− α

Solve the inequality for µ.

2. t-Test:

• What is a t-distribution?

If a rv Z has N(0,1), V has χ2
n distribution, then Tn =

Z√
V/n

has t-distribution with df n.

• The pdf of a t-distribution with df n is

f(t) =
Γ(n+1

2 )√
nπΓ(n2 )

1

(1 + t2

n )(n+1)/2
, −∞ < t <∞ .

• E(Tn) = 0, V (Tn) = n
n−2 What happens if n is large?

• Since Z = X−µ
σ/
√
n

is N(0,1) and V = (n−1)S2

σ2 has χ2
n−1 dis-

tribution,

Hence Tn−1 =

X−µ
σ/
√
n√

(n−1)S2

σ2(n−1)

=
X − µ
s/
√
n

has t-distribution with

df n− 1.

Proof: T 2
n has an F-distribution F(1,n).

3. For Binomial distribution, X= number of heads out of n
tosses.

E(X) = np, V (X) = npq.

• Let p̂ = X/n, then E(p̂) = p, V (p̂) = pq
n .

• When n is large (np ≥ 10, nq ≥ 10), use Normal:

P (−zα/2 < p̂−p√
pq/n

< zα/2) = 1− α

Now p, q are unknown, one way to overcome the dif-
ficulty is to use p̂ to replace p, we get the confidence
interval for p:

p̂± zα/2
√
p̂q̂/n
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• Sometimes, we are given the accuracy requirement,
we need to find the sample size n.

P (−d ≤ p̂− p ≤ d) = 1− α, minimum value of pq is 1/4,

solve for n: n =
z2α/2
4d2

4. χ2
n distribution:

• χ2
n distribution is a special case of the Gamma distri-

bution with α = n/2, β = 2.

Hence E(χ2
n) = αβ = n;V (χ2

n) = αβ2 = 2n. n is called the
degree of freedom.

• If Y1 has χ2
n, Y2 has χ2

m, Y1 and Y2 are independent, then
Y1 + Y2 has χ2

n+m. In another word, χ2 distribution is
stable.

• If Z1, Z2, ..., Zn is a random sample from N(0,1), then
Σn
i=1Zi

2 has χ2
n. (Note the degree of freedom)

• If Y1, Y2, ..., Yn is a random sample from N(µ, σ2), then
(n− 1)S2

σ2
= Σn

i=1(
Yi − Y
σ

)2 has χ2
n−1 distribution. (Note

the loss of 1 degree of freedom).

• Using Table C5, we pick the confidence interval with
each tail α/2,

P (χ2
1−α/2,n−1 <

(n− 1)S2

σ2
< χ2

α/2,n−1) = 1− α
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Case Study: Coral are decline worldwide, possibly be-
cause of pollution or changes in sea temperature. One
kind of coral, the sea fan, looks like a plant growing from
the sea floor, but is actually an animal. In June 2000, Dr.
Drew Harvell’s lab randomly sampled some sea fans at
the Las Redes Reef in Akumal, Mexico, at a depth of 40
ft. They found that 54 of the 104 sea fans they sampled
were infected with disease.

The sample proportion p̂ = 54/104 = 51.9%. What can we
say about the population proportion p?√
p̂q̂/n = 4.9%, hence 95% confidence interval for p is (42.1%, 61.7%)

What can we say about p?

True or false:

1. “51.9% of all sea fans on the Las Redes Reef are in-
fected.”

2. “ It is probably true that 51.9% of all sea fans on the
Las Redes Reef are infected.”

3. “We don’t know exactly what proportion of sea fans
on the Las Redes Reef are infected but we know that it is
within (42.1%, 61.7%).

4. “We don’t know exactly what proportion of sea fans
on the Las Redes Reef are infected but we know that it is
probably within (42.1%, 61.7%).

What you cannot say:

5. Don’t suggest that the parameter varies.

6. Don’t claim that other samples will agree with yours.

7. Don’t be certain about the parameter. “Between a and b
of sea fans are infected”

8. Don’t forget: it is the parameter. “I am 95% confident
that p̂ is between so and so”

9. Don’t claim to know too much. (generalize)
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10. Do take responsibility. Confidence interval is about un-
certainty. You are the one who is uncertain, not the pa-
rameter. Not all the intervals you compute will capture
the true value of the parameter.
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Section 4.5 Hypothesis Testing

List of topics:

1. Compare to a jury trial: A defendant is accused of robbery

Step 1: Null Hypothesis: The defendant is assumed inno-
cent (until proven guilty);

Step 2: The prosecutor present the evidence

Step 3: Review the evidence: The jury consider“could
these data have happened by chance if the null hypothesis
were true?” “How unlikely is unlikely?” 50%, 5%?, 1%?

Step 4: Verdict: Make a decision based on the evidence
“beyond a reasonable doubt”.

2. How to choose the alternative hypothesis?

3. Present the evidence–Choose a test statistic

4. Review the evidence: Compute the tail probability ac-
cording to the alternative hypothesis(p-values), assume
null hypothesis were true.

5. Verdict: Accept or reject the null hypothesis.

Ex: Many people have trouble setting up all the features
of their cell phones, so a company has developed what it
hopes will be easier instructions. The goal is to have at
least 95% of customers succeed. The company tests the
new system on 200 people, of whom 188 were successful.
Is this strong evidence that the new system fails to meet
the company’s goal?

H0 : p = 0.95

HA : p < 0.95

SRS, np ≥ 10, nq = 200 ∗ 0.05 = 10 ≤ 10 OK to use Z-test.
x
n = 188

200 = .94. Assume null hypothesis is true, then E(p̂) =
p0 = 0.95, SD(p̂) =

√
p0q0
n = 0.015
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P-value: P (p̂ < .94) = P (Z < .94−.95
0.015 ) = 0.252

Not enough evidence to reject H0. Not enough evidence
to claim the new system fails the goal.

6. P-Values are the conditional probability of the tail(s) if
the null hypothesis were true:

(i) If HA : p < p0, the P-value is

P (p̂ < x
n|H0 is true); or standardize

P = P (Z <
x
n − p0√

p0q0
n

)

(ii) If HA : p > p0, the P-value is

P (p̂ > x
n|H0 is true); or standardize

P = P (Z >
x
n − p0√

p0q0
n

)

(iii) If HA : p 6= p0, the P-value is

2P (Z > |
x
n − p0√

p0q0
n

||H0 is true).

7. The smaller the P-value is, the stronger the evidence is
against the null hypothesis.

8. If given a significance level α, then when P-value ≤ α,
reject the H0.

9. Rule of Thumb: If the significance level is not given, reject
the null hypothesis if the P-value is less than 5%.

10. If the P-value is larger than the preset significance level
α, say “Not enough evidence to reject the null hypothe-
sis”, instead of “Accept the null hypothesis”. (compare to
“Not enough evidence to prove the defendant is guilty”,
instead of “the defendant is proven innocent”.

11. If the significance level, α, is given, instead of finding the
P-value, you have the alternative way to make a decision,
by finding the critical value, z∗, according to α.
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12. Two types of errors: (Type I: The defendant is innocent,
but the jury find him guilty. Type II: The defendant is
guilty, but the jury find him innocent.)

Type I: The null hypothesis is true, but we made a wrong
decision to reject it.

Type II: The null hypothesis is false, but we failed to
reject it.

13. The probability of making a type I error is α, which is
called the significance level of the test.

14. The probability of making a type II error is β, which is
not easy to calculate.

15. When we choose some values of the parameter, and cal-
culate the type II error, the curve is called the operating
characteristic curve. e.g. OC(p) or OC(µ)

16. A test’s ability to detect a false null hypothesis is called
the power of the test. The power of a test is the probability
that it correctly rejects a false null hypothesis, i.e.

P(Reject H0|H0 is false)=P(Reject H0|HA is true)=1− β

17. Is it possible to reduce both Type I and Type II errors at
the same time?

Yes, by increasing the sample size.

18. Graph

Case 1: Inferences about µ

List of topics:

1. Conditions to check: One population, SRS, nearly normal
population

2. If the population standard deviation σ is given, or if σ is

unknown but the sample size is larger than 30,
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use Z-test: Recall E(X̄) = µ, SD(X̄) = σ/
√
n

When n is large, SD(X̄) ≈ s/
√
n

Confidence interval:

1) If σ is given, x̄± z ∗ σ√
n

2) If σ is unknown but n is large, x̄± z ∗ s√
n

Hypothesis testing: use Z-test

3. If σ is unknown but the sample size is less than 30, use
t-test.

t = x̄−µ
s/
√
n

has a tn−1-distribution

Confidence interval

3) If σ is unknown but n is small, Use Table to find t*,
then x̄± t ∗ s√

n

Hypothesis testing: To find P-value, you can use calculator
tcdf(lower, upper, df) returns the P (l ≤ T ≤ u)

Case 2: Two Populations

1. Recall: If X, Y are independent, then E(X − Y ) = E(X) −
E(Y ),

SD(X − Y ) =
√
V (X) + V (Y ) and

If 1) X1, X2, ..., Xn1 is a random sample from population I
with mean µ1 and standard deviation σ1;

2) Y1, Y2, ..., Yn2 is a random sample from population II with
mean µ2 and standard deviation σ2;

3) Xi’s and Yj’s are independent.

4) X = 1
n1

ΣXi, Y = 1
n2

ΣYi

then, E(X − Y ) = µ1 − µ2,

SD(X − Y ) =
√
σ12

n1
+ σ22

n2

2. Problem I: When the populations are near Normal, the
independence assumptions are met, we want inferences
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about the two means, then use Z-test if sample sizes are
large, use t-test if sample sizes are small.

3. Standard deviation could still be a problem. How to work
around it?

• Use standard error: SE(X − Y ) =
√
s2x
n1

+
s2y
n2

• If, in addition, we can assume the two groups have
the same variances, then it is more accurate to use
the pooled standard error:

SEpooled(X − Y ) = spooled
√

( 1
n1

+ 1
n2

),

where s2
pooled =

(n1−1)s2x+(n2−1)s2y
(n1+n2−2)

4. Ex: If sample sizes are not large enough, we should use
T-test. However, if there is reason to believe that the
two groups do not have the same (similar) variances, the
degree of freedom is tricky. if the two groups should have
the same (similar) variances, the pooled SE isn’t easy to
memorize. You can use STAT software to solve.

5. Problem II: to compare two population proportions. (Men
vs. women, treatment group vs placebo group)

6. Bernoulli trials: under proper assumptions,

p̂1 − p̂2 has mean p1 − p2 and SD
√p1q1

n1
+ p2q2

n2

7. Standard deviation is usually the trouble-maker because it
is usually unknown. We shall use various defined standard
errors to approximate.

8. To find confidence interval for p1 − p2, use ”hats” to ap-
proximate:

SE(p̂1 − p̂2) =
√
p̂1q̂1
n1

+ p̂2q̂2
n2

9. To do hypothesis testing, e.g

H0 : p1 − p2 = 0

Use pooled standard error
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SEpooled(p̂1 − p̂2) =
√
p̂pooledq̂pooled(

1
n1

+ 1
n2

),

where p̂pooled = n1p̂1+n2p̂2
n1+n2

When n is large enough to use Z-test, the z-score is Z =
(p̂1−p̂2)−0

SEpooled(p̂1−p̂2). Then according to HA hypothesis, compute
the corresponding P-value.


