1. (2 points) Suppose you are a freelance programmer who needs to decide which job to take in each week. The set of possible jobs is divided into low-stress and high-stress ones. The basic question, each week, is whether to take on a low-stress job or a high-stress job.

If you select a low-stress job in week i, you get a revenue of $\ell_i > 0$; if you select a high-stress job, you get a revenue of $h_i > 0$. The catch, however, is that in order to take on a high-stress job in week i, it is required that you take no job (of either type) in week $i - 1$; you need a full week of prep time to get ready for the crushing stress level. On the other hand, you can take a low-stress job in week i even if you have done a job (of either type) in week $i - 1$.

Given a sequence of n weeks, a (valid) plan is specified by a choice of “low-stress,” “high-stress,” or “none” for each of the n weeks, with the property that if “high-stress” is chosen for week $i > 1$, then “none” has to be chosen for week $i - 1$. (It is okay to choose a high-stress job in week 1.) The value of the plan is the sum of the revenue you get in each week: ℓ_i if you choose “low-stress” in week i, h_i if you choose “high-stress”, and 0 if you choose “none”.

The problem. Given $n > 0$ and ℓ_1, \ldots, ℓ_n, $h_1, \ldots, h_n > 0$, find a plan of maximum value.

Example. Suppose $n = 4$, and the values of ℓ_i and h_i are given by the following table.

<table>
<thead>
<tr>
<th>week</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>h</td>
<td>5</td>
<td>50</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Then the plan of maximum value would be to choose no job in week 1, a high-stress job in week 2, and low-stress jobs in weeks 3 and 4. The value of this plan would be $0 + 50 + 10 + 10 = 70$.

(a) Does the following algorithm correctly solve this problem? Justify your answer.

```plaintext
for $i = 1$ to $n$ do
  if $h_{i+1} > \ell_i + \ell_{i+1}$ then
    Output “choose no job in week $i$” ;
    Output “choose a high-stress job in week $i + 1$” ;
    Continue with iteration $i + 2$ ;
  else
    Output “choose a low-stress job in week $i$” ;
    Continue with iteration $i + 1$ ;
```

(To avoid problems with overflowing array bounds, we define $h_i = \ell_i = 0$ when $i > n$.)

(b) Give an algorithm that outputs the value of the optimal plan. Your algorithm should run in time $O(n)$. Prove the correctness of your algorithm and analyze its running time.
2. (2 points) In a word processor, the goal of “pretty-printing” is to take text with a ragged right margin, like this,

```
Call me Ishmael.
Some years ago, never mind how long precisely,
having little or no money in my purse,
and nothing particular to interest me on shore,
I thought I would sail about a little
and see the watery part of the world.
```

and turn it into text whose right margin is as “even” as possible, like this.

```
Call me Ishmael. Some years ago, never
mind how long precisely, having little
or no money in my purse, and nothing
particular to interest me on shore, I
thought I would sail about a little
and see the watery part of the world.
```

To make this precise enough, we need to define what it means for the right margins to be “even.” So suppose our text consists of a sequence of words, \(W = \{ w_1, w_2, \ldots, w_n \} \), where \(w_i \) consists of \(c_i \) characters. We have a maximum line length of \(L \). We will assume we have a fixed-width font and ignore issues of punctuation or hyphenation.

A formatting of \(W \) consists of a partition of the words in \(W \) into lines. In the words assigned to a single line, there should be a space after each word except the last; and so if \(w_j, w_{j+1}, \ldots, w_k \) are assigned to one line, then we should have

\[
\sum_{i=j}^{k-1} (c_i + 1) + c_k \leq L.
\]

We will call an assignment of words to a line valid if it satisfies this inequality. The difference between the left-hand side and the right-hand side will be called the slack of the line – that is, the number of remaining spaces at the right margin.

Give an algorithm to find a partition of a set of words \(W \) into valid lines, so that the sum of the squares of the slacks of all lines (including the last line) is minimized. Your algorithm should take as input \(n > 0 \) and \(c_1, \ldots, c_n \), and output the minimum-possible sum of the squares of the slacks. Your algorithm should run in time \(O(n^2) \). Prove the correctness of your algorithm and analyze its running time.

3. (2 points) Suppose it is near the end of the semester and you are taking \(n \) courses, each with a final project that still has to be done. Each project will be graded on the following scale: it will receive an integer score on a scale of 0 to 100, higher numbers being better grades. Your goal is to maximize your average grade on the \(n \) projects. You have a total of \(H \) hours in which to work on the \(n \) projects cumulatively, and you want to decide how to divide up this
time. For simplicity, assume $H > 0$ is an integer, and you will spend an integer number of hours on each project.

To figure out how best to divide up your time, you have come up with a set of functions $(f_i)_{i=1}^n$ for each of your n courses; if you spend $h < H$ hours on the project for course i, you will get a grade of $f_i(h)$. (You may assume that each function f_i are nondecreasing: if $h < h'$, then $f_i(h) \leq f_i(h')$. You can also assume $f_i(0) = 0$ for all i.)

The problem. Given these functions $(f_i)_{i=1}^n$, decide how many hours to spend on each project (in integer values only) so that your average grade, as computed according to the f_i, is as large as possible. Your algorithm should run in time $O(n^3 H^3)$. Prove the correctness of your algorithm and analyze its running time.

4. Use the Bellman-Ford algorithm to decide the length of the shortest path from $s = 1$ to every node in the graph. Show your work.

An implementation of the Bellman-Ford algorithm is given below. (You can work with other implementations if you prefer.)

Algorithm 1: Bellman-Ford Algorithm

- **Input**: An n-node directed graph G with edge weights w and a source node s.
- **Output**: The length of the shortest path from s to every node in G.

```plaintext
for $u = 1$ to $n$ do
  $d[u] \leftarrow +\infty$;
  $d[s] \leftarrow 0$;
for $i = 1$ to $n$ do
  change $\leftarrow 0$;
  for each edge $e = (u,v) \in E$ with weight $w_e$ do
    if $d[u] + w_e < d[v]$ then
      $d[v] \leftarrow d[u] + w_e$;
      change $\leftarrow 1$;
  if change $= 0$ then break;
  if change $= 1$ and $i = n$ then
    return error “$G$ contains a negative cycle”;
return $d$
```
