Implementation of DFS:

(Main):
1. Set \(\text{explored}[v] = 0 \) for all \(v \neq s \).
2. Call \(\text{DFS}(s) \):

\[
\text{DFS}(u): \quad \text{explored}[u] = 1; \quad \text{print}(u);
\]

for each \((u, v) \in E \):

\[
\text{if} \quad \text{explored}[v] = 0 \quad \text{DFS}(v) \quad \text{Add} \ (u,v) \text{ to DFS tree}
\]

end if
end for

Example:

![Graph Diagram]

Output = 1, 2, 3, 4

(see page 93 for a stack-based non-recursive implementation of DFS)

(Statement (3.13) on page 94 shows that the runtime of DFS is \(O(m+n) \) if the graph is given by adj lists, \(O(n^2) \) if the graph is given by an adj matrix.

Applications of BFS/DFS:

(Solved exercise 2 on page 95 of textbook).
Input: an undirected graph $G=(V,E)$
 $a, b, c, d \in V$
 an integer $r \geq 0$.

Story: Two robots X and Y. The robots can only move one at a time.
 X wants to go from a to c.
 Y wants to go from b to d.
 If distance $(x, y) \leq r$, the robots interfere.

Output: Either
 "No solution!"
 A valid schedule.

Examples.

How do we solve this problem using BFS/DFS?

Solution:

1. Build a graph H where each node (x, y) corresponds to:
 - robot X is at x
 - robot Y is at y
 - distance $(x, y) > 0$.

2. Add an edge in H between
 - (x, y) and (x, y') if (y, y') exists in G
 - (x, y) and (x', y) if (x, x') exists in G.

3. Run BFS/DFS and check if (a, b) can reach (c, d) in H.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 3 4 5 6</td>
</tr>
</tbody>
</table>

$X = 1, ~ C = 3, ~ b = 4, ~ d = 6$.

How do we solve this problem using BFS/DFS.

Solution:

1. Build a graph H where each node (x, y) corresponds to:
 - robot X is at x
 - robot Y is at y
 - distance $(x, y) > 0$.

2. Add an edge in H between
 - (x, y) and (x, y') if (y, y') exists in G
 - (x, y) and (x', y) if (x, x') exists in G.

3. Run BFS/DFS and check if (a, b) can reach (c, d) in H.

$X = 1, ~ C = 3, ~ b = 4, ~ d = 6$.

X can reach (c, y) in H.

Y can reach (x, y) in H.

X and Y can reach (c, d) in H.

How do we solve this problem using BFS/DFS.

Solution:

1. Build a graph H where each node (x, y) corresponds to:
 - robot X is at x
 - robot Y is at y
 - distance $(x, y) > 0$.

2. Add an edge in H between
 - (x, y) and (x, y') if (y, y') exists in G
 - (x, y) and (x', y) if (x, x') exists in G.

3. Run BFS/DFS and check if (a, b) can reach (c, d) in H.

X can reach (c, d) in H.

Y can reach (x, y) in H.

X and Y can reach (c, d) in H.