Stable Matching (Gale & Shapley '62)

Given a set of preferences among men/women.

We want to find a matching (# of men = # of women)

Such that: \(f(m,w) \) is NOT matched:

at least one of the following is true:

1. \(m \) prefers his current partner over \(w \).
2. \(w \) prefers his current partner over \(m \).

\(\Rightarrow \) So they cannot deviate.

We call this a "stable Matching".

Example 1: \(m \) likes \(w \) over \(w' \) \(= \) stable!

\(\begin{array}{c}
\text{Example 2: } m \text{ prefers } w \text{ over } w' \\
\text{m' prefers } w' \text{ over } w \end{array} \)

\(\begin{array}{c}
\text{w prefers } m \text{ over } m' \\
\text{w' prefers } m \text{ over } m' \end{array} \)

\(\Rightarrow \) stable

\(\times \) not stable!

\((m,w) \) is not matched, but both prefer each other.

Example 3: \(m \) prefers \(w > w' \)

\(m' \) prefers \(w' > w \)

\(w \) prefers \(m' > m \)

\(w' \) prefers \(m > m' \)

\(\Rightarrow \) It's possible to have multiple stable matchings!