Shortest Paths (w/ negative weights).

Input: directed n-node m-edge graph
\[G = (V, E, c) \]
each edge \((i, j) \in E\) has cost \(C_{ij}\) \(\gamma\) which might be negative.
two nodes \(s, t \in V\)
Output: (the length of) the shortest path from \(s\) to \(t\) in \(G\).

a path \(P\) from \(s\) to \(t\) that minimizes \(\sum_{e \in P} C_e\).

Failed attempt 1. Dijkstra's algorithm no longer works. (see HW3).

\[\begin{array}{ccc}
S=1 & \rightarrow & E=1 \\
1 & \rightarrow & t=0 \\
\end{array} \]
Dijkstra will return \(S-t\) shortest path is \(S-u-t\).

Failed attempt 2. Add a large number \(M\) to all edge weights
st. \(C_e \geq 0\) after this change.,
and then run Dijkstra.

\[\begin{array}{ccc}
S=2 & \rightarrow & E=3 \\
2 & \rightarrow & U=2+5 \\
3 & \rightarrow & Y=3+5 \\
\end{array} \]
Shortest \(S-t\) path is \(S \rightarrow x \rightarrow y \rightarrow t\) with length 3.

If we add \(M=5\) to all edge weights
the shortest path is now
length \((S \rightarrow u \rightarrow t) = 4 + 5 \cdot 2 = 14\)
\(\) length \((S \rightarrow x \rightarrow y \rightarrow t) = 3 + 5 \cdot 3 = 18\)

Remark. \(\) Q: What is the length of the shortest path from \(S\) to \(t\) ?
\[\begin{array}{ccc}
S & \rightarrow & t \\
1 & \rightarrow & E=1 \\
\end{array} \]
A: \(-\infty\)

Why negative weights?

For example, \(C_{ij}\) could represent the cost
of buying an item from agent \(i\) and sell it to agent \(j\).

negative cost = profit.
The Bellman-Ford Algorithm.

single-source shortest path algorithm, i.e., compute the shortest paths from \(s \) to every other node in the graph.

We assume there is no negative cycles in \(G \).

Claim 6.22. If \(G \) has no negative cycles, then there exists a shortest path from \(s \) to \(t \) that is simple, and thus has at most \(n-1 \) edges.

Proof. Fix a shortest path \(P \) from \(s \) to \(t \). If \(P \) visits a node more than once, \(P \) has a cycle. Removing this cycle from \(P \) does not make \(P \) longer.

Dynamic programming. (slightly different from the Bellman-Ford presented in Chapter 6.8 of the textbook on page 290)

\[\text{OPT}(i,v) : \text{the length of the shortest path from } s \text{ to } v \]
\[\forall 0 \leq i \leq n-1 \text{ using at most } i \text{ edges.} \]
\[\forall v \in G . \]

Final answer = \(\text{OPT}(n-1,v) \)

(i.e., the length of the shortest \(s \rightarrow v \) path)

Recursive formula:

\[\text{OPT}(i,v) = \begin{cases} 0 & \text{if } v = s \\ +\infty & \text{otherwise} \end{cases} \]

when \(i = 0 \): for each edge \((u,v) \in E \)

\[\text{OPT}(i,v) = \min \left(\text{OPT}(i-1,v), \text{OPT}(i-1,u) + w(u,v) \right) \]

1: "at most \(i \) edges" gives the same solution as "at most \(i-1 \) edges".

2: we first go from \(s \) to \(u \) using \(\leq i-1 \) edges and then take the edge \(u \rightarrow v \).
Runtime

\(\tilde{O}(mn)\)

- \(n-1\) iterations (or \(n\) iterations if need to detect negative cycles)
- each iteration takes \(O(m)\) time to loop over every edge.

Slower than Dijkstra's algorithm, but allow negative weight.

Improving the memory requirement: \(O(mn)\) additional space → \(O(n)\).

Idea: Instead of \(OPT[i][v]\), we use \(OPT[v]\) and update it repeatedly.

Algorithm 1: Bellman-Ford Algorithm

\[
\text{Input}: \text{An } n\text{-node directed graph } G \text{ with edge weights } w \text{ and a source node } s. \\
\text{Output}: \text{The length of the shortest path from } s \text{ to every node in } G. \\
\text{for } u = 1 \text{ to } n \text{ do} \\
\hspace{1cm} d[u] \leftarrow +\infty; \\
\hspace{1cm} d[s] \leftarrow 0; \\
\text{for } i = 1 \text{ to } n \text{ do} \\
\hspace{1cm} \text{change} \leftarrow 0; \\
\hspace{2cm} \text{for each edge } e = (u, v) \in E \text{ with weight } w_e \text{ do} \\
\hspace{3cm} \text{if } d[u] + w_e < d[v] \text{ then} \\
\hspace{4cm} d[v] \leftarrow d[u] + w_e; \\
\hspace{4cm} \text{change} \leftarrow 1; \\
\hspace{2cm} \text{if change} = 0 \text{ then break; } \\
\hspace{2cm} \text{if change} = 1 \text{ and } i = n \text{ then} \\
\hspace{3cm} \text{return error } "G \text{ contains a negative cycle}"; \\
\text{return } d
\]

\(d[v] = OPT[v]\)

(see page 295 of the textbook for a proof of the correctness of this algorithm)