Outline

Show

- Vertex 3-Coloring
- Hamiltonian Cycle
- Super Mario

are NP-Hard.
Vertex 3-Coloring

Input: a graph

Output: color each vertex using 1 of the 3 colors, so that adjacent vertices do not get the same color.
3-Coloring:
3-Coloring: Yes instance
3-Coloring: No instance
3SAT \leq_p 3\text{-Coloring}

Satisfiable formula \iff

Unsatisfiable formula \iff
Vertex 3-Coloring

[Garey, Johnson, Stockmeyer 1976]
Vertex 3-Coloring

[Garey, Johnson, Stockmeyer 1976]
Vertex 3-Coloring

[Garey, Johnson, Stockmeyer 1976]
Vertex 3-Coloring
[Garey, Johnson, Stockmeyer 1976]

Dec 5,
3SAT \leq_p 3\text{-Coloring}

• Consequence:

3\text{-Coloring is NP-Complete.}
(Because 3\text{-Coloring is also in NP.)}
Outline

Show

- Vertex 3-Coloring
- Hamiltonian Cycle
- Super Mario

are NP-Hard.
Hamiltonian Cycle
Hamiltonian Cycle

• Input: a (directed) graph.

• Solution: a cycle visiting every vertex exactly once.
Variable Gadget

Direction we travel along this chain represents whether to set the variable to true or false.
Clause Gadget

Add a new node for each clause:

C_k

Connect it this way if $\overline{x_j}$ in C_k

C_j

Connect it this way if x_j in C_k

x_i

...
3SAT \leq_p Hamiltonian Cycle
3SAT \leq_p Hamiltonian Cycle

3SAT \leq_p Hamiltonian Path

Dec 5, 2017 Yu Cheng
Outline

Show

• Vertex 3-Coloring
• Hamiltonian Cycle
• Super Mario

are NP-Hard.
Fun with Hardness Proofs

Algorithmic Lower Bounds:
Fun with Hardness Proofs

Erik Demaine

http://courses.csail.mit.edu/6.890/fall14/lectures/
Super Mario Bros. is NP-Hard
[Aloupis, Demaine, Guo 2012]
Super Mario Bros.
Super Mario Bros. is NP-Hard
[Aloupis, Demaine, Guo, Viglietta 2014]

\[(x \lor \neg y \lor z) \land (x \lor y \lor \neg y) \land (\neg x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z)\]
Super Mario Bros. is NP-Hard
[Aloupis, Demaine, Guo, Viglietta 2014]