Runtime of the GS Algorithm:

- \(\Theta(n^2) \).

 Recall: we focus on *worst case* runtime.

 Because # of iterations = \(n^2 \)

 All operations take \(O(1) \) in our implementation.

- \(\Theta(n^2) \)?

 Yes! But we did not cover it in class.

 We did not prove runtime = \(\Omega(n^2) \).

 To prove this, we need to construct inputs

 with \(n \) men and \(n \) women, such that

 our implementation of G-S algorithm takes \(\Omega(n^2) \) time.

- Input size = \(\Theta(n^2) \)

 Reading the input takes \(\Theta(n^2) \).

- Even in the model where we can ask
 "Who is \(m_i \)'s \(j \)-th favorite woman?"
 in \(O(1) \) time, G-S algorithm may still
 take \(\Omega(n^2) \) iterations (see Q1 in HW1).

Common runtimes:

Q1: Find maximum element in an array.

A1: \(\max = -\infty \)

 for \(i = 1 \) to \(n \)

 if \(A[i] > \max \) then \(\max = A[i] \);

 runtime = \(O(n) \)

Q2: Decide if there is a consecutive interval
 that sums to \(s \) in the input array.

Example: \(A = [1, -6, 2] \)

- \(s = 3 \)
- \(s = -3 \)

 No! \(\quad \) Yes! \(\quad \) \(\text{sum}[1, -6, 2] = -3 \).

A2: \(\) for \(i = 1 \) to \(n \)

 \(\) for \(j = i \) to \(n \)

 \(\) \(\sum_{i \leq j} = 0 \)

 \(\) \(\sum_{i \leq j} = \sum_{i \leq j} + A[k] \)

 \(\) if \(\sum_{i \leq j} = s \) return YES.

O(n^3): 3 loops, each loop runs \(O(n) \) time.

\(\Omega(n^3) \): Yes!

 \(i = 1 \ldots \frac{n}{3} \), \(j = \frac{2n}{3} \ldots n \).

 \(\left(\frac{1}{3}n\right)^3 \)

 \(k = i \ldots j \), there are \(\frac{2n}{3} \) choices for \(k \).
Q3: Find a consecutive interval with maximum average.
A3: same as A2, except that we compute
\[\text{avg}_{i-j} = \frac{\text{sum}_{i-j}}{(j-i+1)} \]
and output the \((i,j)\) with the maximum \(\text{avg}_{i-j}\).
Runtime of A3 = \(O(n^3)\).
This can be solved in \(O(n)\) time.
Observe that maximum-average interval is always a single element.

Q4: Given \(n\) points on 2-D plane, find two points that are closest to each other.

\[
\begin{array}{c}
\text{min}\text{-}\text{dis} = +\infty \\
\text{For } i = 1 \text{ to } n \\
\quad \text{for } j = 1 \text{ to } n \\
\quad \quad \text{if } (i \neq j) \\
\quad \quad \quad \text{min}\text{-}\text{dis} = \min \bigg(\text{min}\text{-}\text{dis}, \sqrt{(x_i-x_j)^2 + (y_i-y_j)^2} \bigg)
\end{array}
\]

\[
\begin{array}{c}
\text{min}(a,b) := \\
\begin{cases}
\text{if } a < b & \text{return } a \\
\text{else} & \text{return } b
\end{cases}
\end{array}
\]
Runtime of A4: \(O(n^2)\).
This can be done in \(O(n \log n)\).
using a divide-and-conquer algorithm.