Graphs: A collection of nodes and edges. We use \(V \) to denote the nodes and \(E \) the edges.

\[
G = (V, E)
\]

Directed graphs:

\[
\begin{align*}
1 &\rightarrow 2 \\
1 &\leftarrow 2
\end{align*}
\]

Examples:

- Transportation Network. (e.g. nodes = airports, edges = non-stop routes)
- Communication Network
- Social Network

Paths: A path \(P = (v_1, v_2, \ldots, v_k) \) in \(G = (V, E) \) is a sequence of nodes where each consecutive pair \((v_i, v_{i+1}) \in E \).

Simple paths: A path \(P = (v_1, v_2, \ldots, v_k) \) is simple if all \(v_i \)'s are distinct.

Connected graphs: A graph \(G = (V, E) \) is connected iff there exist a path from \(u \) to \(v \).

Trees: A graph \(G = (V, E) \) is called a tree iff \(G \) is connected and \(G \) has no cycles.

Cycles: A cycle is a path \((v_1, v_2, \ldots, v_k) \) where \(v_1 = v_k \) and the first \(k-1 \) nodes are distinct.

Claim 3.1: Every \(n \)-node tree has exactly \((n-1)\) edges.

Proof Sketch: Given a tree \(T \), root it at a node \(r \). For every node \(v \neq r \) there is a unique edge that is incident to \(v \) and point to \(r \).

Parent, Child, Descendant, Ancestor.
Q: Is G connected?

A: Breadth-First Search (BFS):
Depth-First Search (DFS):

BFS: Start at s ∈ V.
- Include all neighbors of s as the first layer.
- Include all unvisited neighbors of all first-layer nodes as the second layer. Repeat this process.

S = \{1\}

BFS tree: This BFS tree contains all nodes reachable from 1.

Suppose (u, v) ∈ E.
In the BFS tree, u is in layer i, v is in layer j.
|i - j| ≤ 1. (Claim (3.4) on page 81 of textbook)