1. (2 points) Let C be a linear, binary $[n, k]$ code. Suppose the encoding matrix of C is

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

a) What are the values of n and k? What is the code rate of C?
b) List all the codewords of C. What is the minimum distance of C?
c) How would C encode the message (101)?
d) Write down the decoding matrix H of C.
e) Suppose we receive an (possibly corrupted) encoding (01101110). Use H to check if there is any error during transmission and then decode the original message.