Security of RSA:

If Eve can factor large numbers very quickly and consistently, then Eve can break RSA.

Proof: Eve can simply factor \(n = pq \).

Eve knows:

- \((n, e)\) the public key.
- \(c\) the ciphertext.

Eve can compute the decryption exponent

\[d = e^{-1} \pmod{\phi(n)} = e^{-1} \pmod{(p-1)(q-1)}. \]

Eve can recover \(m \) by computing \(c^d \pmod{n} \).

Ideally, we want to claim:

"If Eve can break RSA consistently, then Eve can factor large numbers consistently."

(This is an open question.)

RSA Challenge: (Chapter 6.5 of the textbook)

Claim: If Eve has access to both \(n = pq \) and \(\phi(n) \), then Eve can factor \(n \).

Proof: Eve knows \(n \), \(n = pq \)

Eve knows \(\phi(n) \), \(\phi(n) = n - (p-1)(q-1) \)

Eve can solve the quadratic equation

\[x^2 - (n - \phi(n) + 1) x + n = 0. \]

The two roots of this equation are \(p \) and \(q \).

* We do not know how to factor large numbers quickly.

(Chapter 6.2 of textbook covers attacks on RSA.)

e.g. if \(p \) is too close to \(q \), then RSA is not secure.

if \(e \) is too small, then RSA is not secure.

Timing attacks.

Primality Testing

Lemma: Let \(n \) be an integer.

If \(\exists x, y \) s.t. \(x^2 \equiv y^2 \pmod{n} \) and \(x \neq \pm y \pmod{n} \)

Then \(n \) is not a prime.

Moreover \(\gcd(x-y, n) \) is a non-trivial factor of \(n \).

Proof: \(x^2 - y^2 = (x+y)(x-y) \equiv 0 \pmod{n} \)

If \(d = n \), then \(x \equiv y \pmod{n} \), \(x \neq \pm y \pmod{n} \)

If \(d = 1 \), then \((x+y)(x-y) \equiv 0 \pmod{n} \) \(x \equiv -y \pmod{n} \)

Otherwise \(d \) is a non-trivial factor of \(n \).
Example: \[12^2 = 2^2 \pmod{35}, \quad \text{but} \quad 12 \neq \pm 2 \pmod{35}. \]
\[
gcd(12-2, 35) = 5 \quad \text{is a factor of} \quad 35.
\]

Example: In RSA, \[n = pq. \]

- Eve can test if \(n+1, n+4, n+9, \ldots \) are perfect squares. If Eve succeeds, this allows her to factor \(n \).
- This is because (w.l.o.g assume both \(p \) and \(q \) are odd)
 \[
p \cdot q + \left(\frac{|p-q|}{2} \right) = \left(\frac{p+q}{2} \right)^2 \quad \Leftrightarrow \quad 4pq + (p-q)^2 = (p+q)^2
 \]
 So Eve only need to try \(\frac{|p-q|}{2} \) steps.
- Therefore, it is important to pick \(p, q \) where \(|p-q| \) is not too small.