The RSA algorithm:

1) In the RSA algorithm, suppose the public key \((n, e)\) is \(n = 55\) and \(e = 3\). Given the factorization of \(n = 5 \cdot 11\), find the private key \(d\).

2) Write code for the RSA algorithm. Assume \(p\), \(q\), and \(e\) are given to you. You need to implement the following functions:
 - \texttt{generate_key}: Given \(p\), \(q\), and \(e\), compute the decryption exponent \(d\).
 - \texttt{encrypt}: Given \(n\), \(e\), and the plaintext \(m\), compute the ciphertext \(c\).
 - \texttt{decrypt}: Given \(n\), \(d\), and the ciphertext \(c\), compute the plaintext \(m\).

You can use the following functions \texttt{without} implementing them:
 - \texttt{extended_gcd}: Given \(a\) and \(b\), return two integers \(x\) and \(y\) such that \(ax + by = \gcd(a, b)\).
 - \texttt{modular_exp}: Given \(a\), \(b\), and \(n\), return \(a^b \mod n\).

3) Prove the correctness of the RSA algorithm, that is, \(m^{de} \equiv m \pmod{n}\) for all \(1 \leq m < n\).

Primality testing and factoring:

4a) Given that \(3^{1726} \equiv 1587 \pmod{1727}\) and \(3^{1728} \equiv 1 \pmod{1729}\), what do you know about the primality of 1727 and 1729?

4b) Using the fact that \(1239^2 \equiv 121100 \pmod{202003}\) and \(1318^2 \equiv 121100 \pmod{202003}\), find a non-trivial factor of 202003.

Discrete logarithms, Diffie-Hellman key exchange, and ElGamal encryption:

5) Suppose you know that 137 is a prime and 3 is a primitive root of 137, \(3^6 \equiv 44 \pmod{137}\), and \(3^{10} \equiv 2 \pmod{137}\). Solve the discrete logarithm problem \(3^x \equiv 11 \pmod{137}\).

6a) In Diffie-Hellman key exchange, Alice and Bob agree on a (public) prime \(p = 13\) and primitive root \(g = 2\). Suppose Alice’s secret exponent is \(a = 8\) and Bob’s secret exponent is \(b = 4\). What numbers Alice and Bob send back and forth, and what is the key they agreed on?

6b) In the ElGamal cryptosystem, Alice and Bob use \(p = 17\) and \(g = 3\). Alice chooses her secret to be \(a = 6\), so \(g^a \mod p = 3^6 \mod 17 = 15\). Alice publishes \((p, g, g^a \mod p) = (17, 3, 15)\). Suppose Bob sends Alice the ciphertext \((7, 6)\). That is, he chooses a secret \(1 \leq b \leq p - 1\) and tells Alice that \(g^b \equiv 7 \pmod p\) and \(c = 6 \equiv (g^a)^b \cdot m \pmod p\). Determine the plaintext \(m\).