The Normal distribution is a continuous probability distribution, as opposed to a discrete distribution. A continuous random variable can take any real value along an interval, while a discrete random variable can only take specific values.

ex) The exact height of a random UIC student is a continuous random variable, while the shoe size is discrete.

The Normal distribution is a very common distribution and incredibly useful in statistics. Although we cannot draw a histogram for a continuous probability distribution, we can illustrate its probability density function which is analogous.

This is a typical normal curve. The normal curve is entirely characterized by two parameters: mean and standard deviation. The mean gives the center of the curve (where its peak is) and the standard deviation describes how flat/wide or narrow/tall the curve is. We often will use the notation \(X \sim N(\mu, \sigma)\) to mean “\(X\) is a normal random variable with mean \(\mu\) and standard deviation \(\sigma\)”.

A Standard Normal has mean \(\mu=0\) and \(\sigma=1\). We use \(Z\) to represent a standard normal random variable. We can always standardize or un-standardize using the following formulas:

\[
 z = \frac{x - \mu}{\sigma} \quad \text{or} \quad x = (z \cdot \sigma) + \mu
\]

For the area under the curve between two values is the probability that the random variable is within that interval. So if I want to know \(P(X<5)\)
Where \(X \sim N(4,2) \) this is the same as
\[
P(Z < \frac{5-4}{2}) = P(Z < .5) = .6915
\]
You can find the probability of a standard normal from a Z-Table.

ex) What is \(P(-1 < Z < .5) \)?

The Z-table gives us the area to the left of .5 is .6915, and the area to the left of -1 is .1587. Thus the area between them is .6915-.1587=.5328

ex) If \(X \) is normal with mean 5 and std dev 2, what is \(P(4 < X < 8) \)?

We can standardize 4 and 8:
\[
Pr(4 < X < 8) = Pr(\frac{4-5}{2} < Z < \frac{8-5}{2}) = Pr(-.5 < Z < 1.5) = Pr(Z < 1.5) - Pr(Z < -.5) \approx .6247
\]

Percentiles
If a value \(S \) is the \(p \)th percentile, that means \(p\% \) of the data falls below \(S \), \((100-p)\% \) is above \(S \). In other words, the probability of being less than \(S \) is \(p\% \).

ex) \(X \) is normal with mean 5 and std dev 2, what is the 83rd percentile?

We want to find \(x \) such that
\[
Pr(X < x) = .83
\]
Thus
\[
Pr(Z < \frac{x-5}{2}) = .83
\]
From the z-table, we find that \(z = .9542 \) is such that
\[
Pr(Z < .9542) = .83
\]
so
\[
\frac{x-5}{2} = .9542
\]
so \(x = 6.9084 \).