3.1 Sample Spaces

Definition 3.1. An experiment is any process that generates a set of data.

Definition 3.2. The set of all possible outcomes of a statistical experiment is called the sample space and is represented by the symbol S. Each outcome of the experiment is an element of the sample space.

Example 3.3. Suppose you are to flip a fair coin twice, and record the flips. The sample space would be

$$S = \{HH, HT, TH, TT\}.$$

Example 3.4. Suppose you flip a fair coin twice. If both flips are heads, then you roll a 6-sided die. The sample space may be represented by the set

$$S = \{1, 2, 3, 4, 5, 6, HT, TH, TT\}.$$

Sample spaces use set notation, so to describe complicated sample spaces, we may use the rule method.

Example 3.5. Suppose we are to ask a person how many birthday parties they have attended. Then the sample space may be represented as

$$S = \{x|x \in \mathbb{Z} \text{ and } x \geq 0\}.$$

3.1.1 Events and Set Operations

Definition 3.6. An event is a subset of a sample space.

Example 3.7. Suppose in an experiment we are to draw a random card from a standard deck of 52 cards. The sample space is

$$S = \{2\spadesuit, \ldots, A\spadesuit, \ldots, 2\clubsuit, \ldots, A\clubsuit\}.$$

Some events are:

$$A = \{x|x \text{ is a heart}\}$$
$$B = \{x|x \text{ is a face card}\}$$

The empty set, or \emptyset is used to represent an event that cannot happen.

Definition 3.8. The complement of an event A is the set of all outcomes of S that do not belong to A, and is represented by A'

Definition 3.9. The union of two events A and B, represented by $A \cup B$ is the set of all outcomes in either A or B (or both).
Definition 3.10. The **intersection** of two events A and B, represented by $A \cap B$ is the set of all outcomes common to both A and B. If $A \cap B = \emptyset$ then we say A and B are **mutually exclusive** (or **disjoint**).

Example 3.11. Suppose you are to roll a 10 sided die once and observe the number rolled. Let $A =$ “The number rolled is even” and $B =$ “The number rolled is divisible by 3”. We could instead write

$$A = \{2, 4, 6, 8, 10\}, B = \{3, 6, 9\}.$$

The complement events are

$$A' = \{1, 3, 5, 7, 9\}, B' = \{1, 2, 4, 5, 7, 8, 10\}.$$

The union and intersection respectively are

$$A \cup B = \{2, 3, 4, 6, 8, 9, 10\}, A \cap B = \{3\}$$

Definition 3.12. The **cardinality** of a set A is the number of elements in the set, and is represented by $n(A)$.

Definition 3.13. A sample space is **discrete** if the elements may be enumerated (it is countable). A **continuous** sample space has infinite cardinality and is uncountable.

3.1.2 Venn Diagrams

3.1.3 The Inclusion/Exclusion Principle

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

$$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C)$$