1. Evaluate the limits, if they exist:

(a) \(\lim_{x \to 1} \frac{x + 1}{x^2 + 1} \)

(b) \(\lim_{x \to 3} \frac{2x^2 - 7x + 3}{3x - x^2} \)

Solution:

(a) The function \(f(x) = \frac{x + 1}{x^2 + 1} \) is continuous at \(x = 1 \). In fact, \(f(x) \) is continuous at all \(x \) in the interval \((-\infty, \infty)\). Therefore, we can evaluate the limit using substitution.

\[
\lim_{x \to 1} \frac{x + 1}{x^2 + 1} = \frac{1 + 1}{1^2 + 1} = 1
\]

(b) When substituting \(x = 3 \) into the function \(f(x) = \frac{2x^2 - 7x + 3}{3x - x^2} \) we find that

\[
\frac{2x^2 - 7x + 3}{3x - x^2} = \frac{2(3)^2 - 7(3) + 3}{3(3) - 3^2} = \frac{0}{0}
\]

which is indeterminate. We can resolve this indeterminacy by factoring.

\[
\lim_{x \to 3} \frac{2x^2 - 7x + 3}{3x - x^2} = \lim_{x \to 3} \frac{(x - 3)(2x - 1)}{-x(x - 3)}
\]

\[
= \lim_{x \to 3} \frac{2x - 1}{-x}
\]

\[
= \frac{2(3) - 1}{-3}
\]

\[
= -\frac{5}{3}
\]
2. Use the Intermediate Value Theorem to show that the function

\[f(x) = xe^{x-1} - \frac{1}{2} \]

has a zero in the interval \([0, 1]\).

Solution: First we recognize that \(f(x) = xe^{x-1} - \frac{1}{2}\) is continuous on the interval \([0, 1]\). In fact, \(f(x)\) is continuous everywhere. Next, we evaluate \(f(x)\) at the endpoints of the interval.

\[
\begin{align*}
 f(0) &= 0 \cdot e^{0-1} - \frac{1}{2} = -\frac{1}{2} \\
 f(1) &= 1 \cdot e^{1-1} - \frac{1}{2} = \frac{1}{2}
\end{align*}
\]

Since \(f(0) < 0\) and \(f(1) > 0\), the Intermediate Value Theorem tells us that \(f(c) = 0\) for some \(c\) in the interval \([0, 1]\).

![Graph of \(f(x) = xe^{x-1} - \frac{1}{2}\) on the interval \([0, 1]\).](image)
3. Compute the derivatives of the following functions.

(a) \(f(x) = \frac{x^2 - 1}{x^2 + 1} \)

(b) \(f(x) = 3x^5 - 6x^{-4/3} \)

(c) \(f(x) = (x - 1)e^x \)

Solution:

(a) Use the Quotient Rule.

\[
\begin{align*}
 f'(x) &= \frac{(x^2 + 1)(x^2 - 1)' - (x^2 - 1)(x^2 + 1)'}{(x^2 + 1)^2} \\
 &= \frac{2x(x^2 + 1) - 2x(x^2 - 1)}{(x^2 + 1)^2} \\
 &= \frac{2x^3 + 2x^2 - 2x^3 + 2x}{x^2 + 1} \\
 &= \frac{2x}{x^2 + 1}
\end{align*}
\]

(b) Use the Power Rule.

\[
 f'(x) = 15x^4 + 8x^{-7/3}
\]

(c) Use the Product Rule.

\[
\begin{align*}
 f'(x) &= (x - 1)(e^x)' + (x - 1)'e^x \\
 &= xe^x - e^x + e^x \\
 &= xe^x
\end{align*}
\]
4. Consider the function \(f(x) = x^2 - 2x \).

(a) Use the definition of the derivative as a limit of a difference quotient to compute \(f'(3) \).

(b) Write an equation for the line tangent to the graph of \(f \) at \(x = 3 \).

Solution:

(a) There are two possible difference quotients we can use to evaluate \(f'(3) \). One is:

\[
\begin{align*}
f'(3) &= \lim_{h \to 0} \frac{f(h + 3) - f(3)}{h} \\
&= \lim_{h \to 0} \frac{[(h + 3)^2 - 2(h + 3)] - [3^2 - 2(3)]}{h}.
\end{align*}
\]

The other is:

\[
\begin{align*}
f'(3) &= \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} \\
&= \lim_{x \to 3} \frac{(x^2 - 2x) - [3^2 - 2(3)]}{x - 3}.
\end{align*}
\]

Evaluating the first limit above we have:

\[
\begin{align*}
f'(3) &= \lim_{h \to 0} \frac{[(h + 3)^2 - 2(h + 3)] - [3^2 - 2(3)]}{h} \\
&= \lim_{h \to 0} \frac{h^2 + 6h + 9 - 2h - 6}{h} \\
&= \lim_{h \to 0} \frac{h^2 + 4h}{h} \\
&= \lim_{h \to 0} (h + 4) \\
&= 0 + 4 \\
&= 4
\end{align*}
\]

(b) The slope of the tangent line is \(f'(3) = 4 \). At \(x = 3 \) we have \(f(3) = 3^2 - 2(3) = 3 \) so \((3, 3)\) is a point on the line. Therefore, an equation for the tangent line is:

\[
y - 3 = 4(x - 3)
\]
5. Consider the piecewise-defined function below:

\[f(x) = \begin{cases}
 x^2 & \text{if } x < 1 \\
 4 - kx & \text{if } x \geq 1
\end{cases} \]

(a) Find the value of \(k \) for which \(f(x) \) is continuous for all values of \(x \). Justify your answer.

(b) For the value of \(k \) you found in part (a), is \(f(x) \) differentiable at \(x = 1 \)? Explain your answer.

Solution:

(a) The functions \(x^2 \) and \(4 - kx \) are continuous for all \(x \). In order for \(f(x) \) to be continuous for all \(x \), we must select \(k \) so that \(f(x) \) is continuous at \(x = 1 \). To do this, we must compute the one-sided limits at \(x = 1 \).

\[
\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} x^2 = 1^2 = 1
\]

\[
\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (4 - kx) = 4 - k(1) = 4 - k
\]

In order to have continuity at \(x = 1 \), the one-sided limits must be equal there. Thus, we need:

\[
\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) \\
1 = 4 - k
\]

\[k = 3 \]

Therefore, \(\lim_{x \to 1} f(x) = 1 \) for this value of \(k \). Furthermore, we have \(f(1) = 4 - 3(1) = 1 \). Thus, since \(\lim_{x \to 1} f(x) = f(1) \) we know that \(f(x) \) is continuous at \(x = 1 \).

(b) \(f(x) \) is differentiable at \(x = 1 \) if \(f'(x) \) is continuous there. The derivative \(f'(x) \) when \(k = 3 \) is:

\[
f'(x) = \begin{cases}
 2x & \text{if } x < 1 \\
 -3 & \text{if } x > 1
\end{cases}
\]

The one-sided limits of \(f'(x) \) at \(x = 1 \) are:

\[
\lim_{x \to 1^-} f'(x) = \lim_{x \to 1^-} 2x = 2(1) = 2
\]

\[
\lim_{x \to 1^+} f'(x) = \lim_{x \to 1^+} -3 = -3
\]

Therefore, since the one-sided limits are not equal at \(x = 1 \), \(f(x) \) is not differentiable there.