1. Compute the indefinite integrals:

(a) \[\int (x^3 - 4x^2 + 3x + 5) \, dx \]

(b) \[\int \sqrt{x} (x^2 - 1) \, dx \]

Solution:

(a) Using the linearity and power rules we have:

\[
\int (x^3 - 4x^2 + 3x + 5) \, dx = \int x^3 \, dx - 4 \int x^2 \, dx + 3 \int x \, dx + 5 \int 1 \, dx
\]

\[= \frac{1}{4} x^4 - 4 \left(\frac{1}{3} x^3 \right) + 3 \left(\frac{1}{2} x^2 \right) + 5x + C\]

\[= \frac{1}{4} x^4 - \frac{4}{3} x^3 + \frac{3}{2} x^2 + 5x + C\]

(b) Using some algebra and the linearity and power rules we have:

\[
\int \sqrt{x} (x^2 - 1) \, dx = \int (x^{5/2} - x^{1/2}) \, dx
\]

\[= \int x^{5/2} \, dx - \int x^{1/2} \, dx\]

\[= \frac{2}{7} x^{7/2} - \frac{2}{3} x^{3/2} + C\]
2. Use L'Hôpital’s Rule to compute \(\lim_{x \to 0} \frac{e^{7x} - 1}{e^{3x} - 1} \).

Solution: Upon substituting \(x = 0 \) into the function \(\frac{e^{7x} - 1}{e^{3x} - 1} \) we get

\[
\frac{e^{7(0)} - 1}{e^{3(0)} - 1} = \frac{0}{0}
\]

which is indeterminate. We resolve the indeterminacy using L'Hôpital’s Rule.

\[
\lim_{x \to 0} \frac{e^{7x} - 1}{e^{3x} - 1} \overset{\text{L'Hôpital's Rule}}{=} \lim_{x \to 0} \frac{(e^{7x} - 1)'}{(e^{3x} - 1)'}
\]

\[
= \lim_{x \to 0} \frac{7e^{7x}}{3e^{3x}}
\]

\[
= \frac{7e^{7(0)}}{3e^{3(0)}}
\]

\[
= \frac{7}{3}
\]
3. Let \(f(x) = x^3 - 2x^2 + x \).

(a) Find the critical point(s) of \(f \) and classify each as a local maximum, local minimum, or neither. Determine the intervals of monotonicity of \(f \).

(b) Find the inflection point(s) of \(f \). Determine the intervals where \(f \) is concave up and concave down.

(c) Sketch the graph \(y = f(x) \), labeling the critical points and inflection points.

Solution:

(a) The critical points of \(f(x) \) are the values of \(x \) for which either \(f'(x) \) does not exist or \(f'(x) = 0 \). Since \(f(x) \) is a polynomial, \(f'(x) \) exists for all \(x \in \mathbb{R} \) so the only critical points are solutions to \(f'(x) = 0 \).

\[
\begin{align*}
f'(x) &= 0 \\
(x^3 - 2x^2 + x)' &= 0 \\
3x^2 - 4x + 1 &= 0 \\
(3x - 1)(x - 1) &= 0 \\
x &= \frac{1}{3}, \ x = 1
\end{align*}
\]

Thus, \(x = \frac{1}{3} \) and \(x = 1 \) are the critical points of \(f \).

We will use the First Derivative Test to classify the critical points. The domain of \(f \) is \((-\infty, \infty)\). We now split the domain into the three intervals \((-\infty, \frac{1}{3})\), \((\frac{1}{3}, 1)\), and \((1, \infty)\). We then evaluate \(f'(x) \) at a test point in each interval.

<table>
<thead>
<tr>
<th>Interval</th>
<th>Test Point, (c)</th>
<th>(f'(c))</th>
<th>Sign of (f'(c))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-\infty, \frac{1}{3}))</td>
<td>0</td>
<td>(f'(0) = 1)</td>
<td>+</td>
</tr>
<tr>
<td>((\frac{1}{3}, 1))</td>
<td>(\frac{2}{3})</td>
<td>(f'(\frac{2}{3}) = -\frac{1}{3})</td>
<td>-</td>
</tr>
<tr>
<td>((1, \infty))</td>
<td>2</td>
<td>(f'(2) = 5)</td>
<td>+</td>
</tr>
</tbody>
</table>

Since the sign of \(f'(x) \) changes from + to − at \(x = \frac{1}{3} \), the First Derivative Test implies that \(f(\frac{1}{3}) = \frac{1}{27} \) is a local maximum. Since the sign of \(f'(x) \) changes from − to + at \(x = 1 \), the First Derivative Test implies that \(f(1) = 0 \) is a local minimum. Furthermore, from the table we conclude that \(f \) is increasing on \((-\infty, \frac{1}{3})\) \(\cup \ (1, \infty) \) because \(f'(x) > 0 \) for all \(x \in \ (-\infty, \frac{1}{3})\) \(\cup \ (1, \infty) \) and \(f \) is decreasing on \((\frac{1}{3}, 1)\) because \(f'(x) < 0 \) for all \(x \in \ (\frac{1}{3}, 1) \).
(b) The inflection points of \(f(x) \) are the points where \(f''(x) \) changes sign. To determine these points we start by finding solutions to the equation \(f''(x) = 0 \).

\[
\begin{align*}
f''(x) &= 0 \\
(3x^2 + 4x + 1)' &= 0 \\
6x - 4 &= 0 \\
x &= \frac{2}{3}
\end{align*}
\]

We now split the domain of \(f \) into the two intervals \((-\infty, \frac{2}{3})\) and \((\frac{2}{3}, \infty) \). We then evaluate \(f''(x) \) at a test point in each interval to determine the intervals of concavity.

<table>
<thead>
<tr>
<th>Interval</th>
<th>Test Point, (c)</th>
<th>(f''(c))</th>
<th>Sign of (f''(c))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-\infty, \frac{2}{3}))</td>
<td>0</td>
<td>(-4)</td>
<td>-</td>
</tr>
<tr>
<td>((\frac{2}{3}, \infty))</td>
<td>1</td>
<td>(2)</td>
<td>+</td>
</tr>
</tbody>
</table>

Since there is a sign change in \(f''(x) \) at \(x = \frac{2}{3} \), the point \(x = \frac{2}{3} \) is an inflection point. Furthermore, from the table we conclude that \(f \) is concave up on \((\frac{2}{3}, \infty) \) because \(f''(x) > 0 \) for all \(x \in (\frac{2}{3}, \infty) \) and \(f \) is concave down on \((-\infty, \frac{2}{3})\) because \(f''(x) < 0 \) for all \(x \in (-\infty, \frac{2}{3}) \).

(c)
4. Find the absolute minimum and the absolute maximum of \(f(x) = \frac{x^3}{3} - \frac{x^2}{2} + 2 \) on the interval \([-1, 2]\).

Solution: The minimum and maximum values of \(f(x) \) will occur at a critical point in the interval \([-1, 2]\) or at one of the endpoints. The critical points are the values of \(x \) for which either \(f'(x) = 0 \) or \(f'(x) \) does not exist. Since \(f(x) \) is a polynomial, \(f'(x) \) exists for all \(x \in \mathbb{R} \). Therefore, the only critical points are solutions to \(f'(x) = 0 \).

\[
f'(x) = 0 \\
\left(\frac{x^3}{3} - \frac{x^2}{2} + 2\right)' = 0 \\
x^2 - x = 0 \\
x(x - 1) = 0 \\
x = 0, \ x = 1
\]

Both critical points \(x = 0 \) and \(x = 1 \) lie in \([-1, 2]\). Therefore, we check the value of \(f(x) \) at \(x = -1, \ 0, \ 1, \) and \(2 \).

\[
f(-1) = (-1)^3/3 - (-1)^2/2 + 2 = \frac{7}{6} \\
f(0) = 0^3/3 - 0^2/2 + 2 = 2 \\
f(1) = 1^3/3 - 1^2/2 + 2 = \frac{11}{6} \\
f(2) = 2^3/3 - 2^2/2 + 2 = \frac{8}{3}
\]

The minimum value of \(f(x) \) on \([-1, 2]\) is \(\boxed{\frac{7}{6}} \) because it is the smallest of the above values of \(f \). The maximum is \(\boxed{\frac{8}{3}} \) because it is the largest.
5. Design a rectangular box with square base (as in the diagram below) and a total surface area of 6 square feet that encloses the maximum possible volume. Determine both the dimensions of the box and the volume enclosed.

Solution: We begin by letting \(w \) be the length of one side of the base and \(h \) be the height of the box. The function we seek to minimize is the volume of the box.

Function: \[\text{Volume} = w^2h \] (1)

The constraint in the problem is that the total surface area is 6. This gives us the equation

Constraint: \[2w^2 + 4wh = 6 \] (2)

Solving this equation for \(h \) we get

\[
2w^2 + 4wh = 6 \\
w^2 + 2wh = 3 \\
h = \frac{3 - w^2}{2w} \] (3)

We then plug this into the volume equation (1) to write the volume in terms of \(w \) only.

\[
\text{Volume} = w^2h \\
\text{Volume} = w^2 \left(\frac{3 - w^2}{2w} \right) \\
f(w) = \frac{3}{2}w - \frac{1}{2}w^3 \] (4)

We want to find the absolute maximum of \(f(w) \) on the interval \((0, \sqrt{3}] \). We know that \(w > 0 \) because \(w \) must be positive and nonzero (otherwise, the surface area would be 0 and it must be 6). It is possible that \(h = 0 \) in which case the surface area constraint would give us \(2w^2 + 4w(0) = 6 \Rightarrow w^2 = 3 \Rightarrow w = \sqrt{3} \).
The absolute maximum of \(f(w) \) will occur either at a critical point of \(f(w) \) in \((0, \sqrt{3}]\), at \(x = \sqrt{w} \), or it will not exist. The critical points of \(f(w) \) are solutions to \(f'(x) = 0 \).

\[
f'(w) = 0
\]
\[
\frac{3}{2} - \frac{3}{2}w^2 = 0
\]
\[
w^2 = 1
\]
\[
w = \pm 1
\]

However, since \(w = -1 \) is outside \((0, \sqrt{3}]\), the only critical point is \(w = 1 \). Plugging this into \(f(w) \) we get:

\[
f(1) = \frac{3}{2}(1) - \frac{1}{2}(1)^2 = 1
\]

Evaluating \(f(w) \) at \(w = \sqrt{3} \) and taking the limit of \(f(w) \) as \(w \) approaches \(w = 0 \) we get:

\[
\lim_{w \to 0^+} f(w) = \lim_{w \to 0^+} \left(\frac{3}{2}w - \frac{1}{2}w^3 \right) = 0
\]
\[
f(\sqrt{3}) = \frac{3}{2}(\sqrt{3}) - \frac{1}{2}(\sqrt{3})^3 = 0
\]

both of which are smaller than 1. We conclude that the volume is an absolute maximum at \(w = 1 \) and that the resulting volume is 1 ft\(^3\). The height of the box when \(w = 1 \) is found using equation (3).

\[
h = \frac{3 - 1^2}{2(1)} = 1
\]
6. Compute the area of the region defined by $2 \leq x \leq 5, \ 0 \leq y \leq x^2$.

Solution: The area of the region is given by the formula:

$$\text{Area} = \int_2^5 x^2 \, dx$$

Using the Fundamental Theorem of Calculus, Part I to evaluate the integral we get:

$$\text{Area} = \left[\frac{1}{3} x^3 \right]_2^5$$

$$= \frac{1}{3} 5^3 - \frac{1}{3} 2^3$$

$$= \frac{125}{3} - \frac{8}{3}$$

$$= 39$$