1. Let \(r(t) = \langle 4 \cos(2t), 5 \sin(2t), 3 \cos(2t) \rangle \).

(a) Find the velocity and acceleration of \(r(t) \), given as a function of \(t \).

(b) Find the principal unit normal vector when \(t = \pi \).

Solution:

(a) The velocity and acceleration vectors are the first and second derivatives of \(r(t) \), respectively.

\[
\begin{align*}
\mathbf{r}'(t) &= \langle -8 \sin(2t), 10 \cos(2t), -6 \sin(2t) \rangle, \\
\mathbf{r}''(t) &= \langle -16 \cos(2t), -20 \sin(2t), -12 \sin(2t) \rangle
\end{align*}
\]

(b) By definition, the principal unit normal vector is

\[
\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{||\mathbf{T}'(t)||}
\]

where

\[
\begin{align*}
\mathbf{T}(t) &= \frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||} \\
\mathbf{T}(t) &= \frac{\langle -8 \sin(2t), 10 \cos(2t), -6 \sin(2t) \rangle}{\sqrt{(-8 \sin(2t))^2 + (10 \cos(2t))^2 + (-6 \sin(2t))^2}} \\
\mathbf{T}(t) &= \frac{\langle -8 \sin(2t), 10 \cos(2t), -6 \sin(2t) \rangle}{\sqrt{64 \sin^2(2t) + 100 \cos^2(2t) + 36 \sin^2(2t)}} \\
\mathbf{T}(t) &= \frac{\langle -8 \sin(2t), 10 \cos(2t), -6 \sin(2t) \rangle}{\sqrt{100 \sin^2(2t) + 100 \cos^2(2t)}} \\
\mathbf{T}(t) &= \frac{\langle -8 \sin(2t), 10 \cos(2t), -6 \sin(2t) \rangle}{\sqrt{100}} \\
\mathbf{T}(t) &= \frac{\langle -8 \sin(2t), 10 \cos(2t), -6 \sin(2t) \rangle}{10} \\
\mathbf{T}(t) &= \langle -\frac{4}{5} \sin(2t), \cos(2t), -\frac{3}{5} \sin(2t) \rangle
\end{align*}
\]
is the unit tangent vector. Thus, the principal unit normal vector is

\[
N(t) = \frac{T'(t)}{|T'(t)|}
\]

\[
N(t) = \frac{\langle -\frac{8}{5} \cos(2t), -2 \sin(2t), -\frac{6}{5} \cos(2t) \rangle}{\sqrt{(-\frac{8}{5} \cos(2t))^2 + (-2 \sin(2t))^2 + (-\frac{6}{5} \cos(2t))^2}}
\]

\[
N(t) = \frac{\langle -\frac{8}{5} \cos(2t), -2 \sin(2t), -\frac{6}{5} \cos(2t) \rangle}{\sqrt{\frac{64}{25} \cos^2(2t) + 4 \sin^2(2t) + \frac{36}{25} \sin^2(2t)}}
\]

\[
N(t) = \frac{\langle -\frac{8}{5} \cos(2t), -2 \sin(2t), -\frac{6}{5} \cos(2t) \rangle}{\sqrt{4 \sin^2(2t) + 4 \cos^2(2t)}}
\]

\[
N(t) = \frac{\langle -\frac{8}{5} \cos(2t), -2 \sin(2t), -\frac{6}{5} \cos(2t) \rangle}{\sqrt{4}}
\]

\[
N(t) = \frac{\langle -\frac{8}{5} \cos(2t), -2 \sin(2t), -\frac{6}{5} \cos(2t) \rangle}{2}
\]

\[
N(t) = \langle -\frac{4}{5} \cos(2t), -\sin(2t), -\frac{3}{5} \cos(2t) \rangle
\]

When \(t = \pi \) we have

\[
N(\pi) = \langle -\frac{4}{5}, 0, -\frac{3}{5} \rangle
\]
2. Consider the curve \(r(t) = \langle \cos(t), \sin(t), t \rangle \).

(a) Graph the curve \(r(t) \) for \(0 \leq t \leq 2\pi \). Indicate in your graph the endpoints and the direction as \(t \) increases.

(b) Find the speed of \(r(t) \) when \(t = 0 \) and the unit tangent vector \(T(t) \) when \(t = \frac{\pi}{2} \).

Solution:

(a) A plot of the curve is shown below:

The endpoints of the curve are (1, 0, 0) and (1, 0, 2\(\pi \)). The direction is counterclockwise as viewed from above.

(b) By definition, the speed is \(v(t) = ||r'(t)|| = ||\langle -\sin(t), \cos(t), 1 \rangle|| = \sqrt{\sin^2(t) + \cos^2(t) + 1} = \sqrt{2} \). At \(t = 0 \) we have

\[
v(0) = \sqrt{2}
\]

since the speed is constant. By definition, the unit tangent vector is \(T(t) = r'(t) / ||r'(t)|| = \frac{1}{\sqrt{2}} (-\sin(t), \cos(t), 1) \). Thus, at \(t = \frac{\pi}{2} \) we have

\[
T(\frac{\pi}{2}) = \frac{1}{\sqrt{2}} (-1, 0, 1)
\]
3. Let \(r_1(t) = \langle t^2, t^2 - 2t, t + 2 \rangle \) and \(r_2(s) = \langle s, -1, 2s + 1 \rangle \).

(a) Find the point or points, if any, at which the curves \(r_1(t) \) and \(r_2(s) \) intersect.

(b) Find the area of the parallelogram spanned by the two vectors \(r_1'(0) \) and \(r_1'(2) \).

Solution:

(a) The curves will intersect if there exist numbers \(t \) and \(s \) such that \(r_1(t) = r_2(s) \). This will occur if there is a solution to the system of equations:

\[
t^2 = s, \quad t^2 - 2t = -1, \quad t + 2 = 2s + 1
\]

The second equation leads to \(t^2 - 2t + 1 = 0 \) and, thus, \(t = 1 \). Plugging this into the first and third equations gives \(s = 1 \) in both cases. Therefore, the point of intersection is

\[
r_1(1) = \langle 1, -1, 3 \rangle
\]

(b) The derivative of \(r_1(t) \) is \(r_1'(t) = \langle 2t, 2t - 2, 1 \rangle \). The parallelogram is then spanned by

\[
u = r_1'(0) = \langle 0, -2, 1 \rangle \quad \text{and} \quad v = r_1'(2) = \langle 4, 2, 1 \rangle
\]

The area of this parallelogram is:

\[
A = ||u \times v||
\]

\[
A = ||\langle 0, -2, 1 \rangle \times \langle 4, 2, 1 \rangle||
\]

\[
A = ||\langle -4, 4, 8 \rangle||
\]

\[
A = \sqrt{(-4)^2 + 4^2 + 8^2}
\]

\[
A = 4\sqrt{6}
\]
4. Find the equation of the line through the point \(P = (1, -3, 2) \) that is perpendicular to the vectors \(\langle 1, 0, 2 \rangle \) and \(\langle 2, 1, 0 \rangle \).

Solution: The vector equation for a line containing the point \(P_0(x_0, y_0, z_0) \) and parallel to the vector \(\mathbf{v} = \langle a, b, c \rangle \) is

\[
\mathbf{r}(t) = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle
\]

The vector \(\mathbf{v} \) is the cross product of \(\langle 1, 0, 2 \rangle \) and \(\langle 2, 1, 0 \rangle \) since \(\mathbf{v} \) will be perpendicular to both vectors.

\[
\mathbf{v} = \langle 1, 0, 2 \rangle \times \langle 2, 1, 0 \rangle = \langle -2, 4, 1 \rangle
\]

Therefore, the equation for the line is

\[
\mathbf{r}(t) = \langle 1, -3, 2 \rangle + t \langle -2, 4, 1 \rangle
\]
5. Show that the limit $\lim_{(x,y)\to(0,0)} \frac{xy}{3x^2 + y^2}$ does not exist.

Solution: We use the two-path test to show that the limit does not exist. Let the first path be the line $y = 0$ as $x \to 0^+$. The limit along this path is:

$$\lim_{(x,y)\to(0,0)} \frac{xy}{3x^2 + y^2} = \lim_{x \to 0^+} \frac{x \cdot 0}{3x^2 + 0^2} = 0$$

Now let the second path be the line $y = x$ as $x \to 0^+$. The limit along this path is:

$$\lim_{(x,y)\to(0,0)} \frac{xy}{3x^2 + y^2} = \lim_{x \to 0^+} \frac{x \cdot x}{3x^2 + x^2} = \lim_{x \to 0^+} \frac{x^2}{4x^2} = \frac{1}{4}$$

Since the limits are different along different paths, the limit does not exist.
6. Find the length of the curve \(\mathbf{r}(t) = (2 \cos(3t), 3t, 2 \sin(3t)) \) between \((2, 0, 0)\) and \((2, 2\pi, 0)\).

Solution: The length of the curve is computed using the formula

\[
L = \int_{a}^{b} ||\mathbf{r}'(t)|| \, dt
\]

The derivative \(\mathbf{r}'(t) \) and its magnitude are:

\[
||\mathbf{r}'(t)|| = ||\langle -6 \sin(3t), 3, 6 \cos(3t) \rangle||
\]

\[
||\mathbf{r}'(t)|| = \sqrt{36 \sin^2(3t) + 9 + 36 \cos^2(3t)}
\]

\[
||\mathbf{r}'(t)|| = \sqrt{45}
\]

The endpoints of the curve correspond to \(t = 0 \) and \(t = \frac{2\pi}{3} \), respectively. Therefore, the length is

\[
L = \int_{0}^{2\pi/3} \sqrt{45} \, dt = \frac{2\pi \sqrt{45}}{3} = 2\pi \sqrt{5}
\]