1. (5 points) This question concerns the matrix

\[B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{pmatrix}. \]

Solution: For use in solving (a)-(c) below, put \(B^T \) into row reduced echelon form:

\[R' = \text{RREF}(B^T) = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \]

Note: An alternate solution to this problem might use the RREF of \(B \) and the elimination matrix \(E \).

(a) (2 points) Find a basis for \(C(B^T) \), the row space of \(B \).

Solution: The pivot columns of \(B^T \) form a basis of \(C(B^T) \):

\[\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}. \]

In fact, any two columns of \(B^T \) (i.e. rows of \(B \)) form a basis of \(C(B^T) \). (For some other rank 2 matrices, one would need to choose the pair more carefully.)

(b) (2 points) Find a basis for \(N(B^T) \), the left null space of \(B \).

Solution: The null space of \(B^T \) is one-dimensional, and a basis is computed from the free column of \(R' \):

\[\begin{pmatrix} -F \\ I \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}. \]

To check this, notice that the sum of the first and last rows of \(B \) is equal to twice the middle row.

(c) (1 point) Of the four fundamental subspaces associated to \(B \), which one can also be described as \(C(B^T) \perp \), the orthogonal complement of the row space?

Solution: The null space, \(N(B) \), is the orthogonal complement of \(C(B^T) \). The orthogonality of rows of \(B \) and vectors \(\mathbf{x} \in N(B) \) is expressed in the definition of the null space, \(B \mathbf{x} = \mathbf{0} \).
2. (6 points) Evaluate each determinant, or explain why it is not defined.
 (a) (1 point) $\det(-3)$

 Solution:

 (b) (1 point) $\det \begin{pmatrix} 0 & 5 \\ 5 & 27 \end{pmatrix}$

 Solution: -25

 (c) (1 point) $\begin{vmatrix} 2 & 2 & 0 \\ 1 & 2 & 0 \end{vmatrix}$

 Solution: Not defined, because the matrix is rectangular.

 (d) (1 point) $\begin{vmatrix} 0 & 1 & 0 & 0 & 7 \\ 1 & 0 & 0 & 0 & 7 \\ 0 & 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 \end{vmatrix}$

 Solution: -1 (One possible shortcut: swap rows 1,2 and subtract row 4 from row 5 to obtain upper triangular with all 1s on the diagonal. Hence $-\det = 1$.)

 (e) (1 point) $\det \left[\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right]$

 Solution: 1

 (f) (1 point) $\det A$, where A is the 4×4 matrix with entries $a_{ij} = \begin{cases} 1, & \text{if } i + j = 5, \\ 0, & \text{otherwise}. \end{cases}$

 Solution:

 $\begin{vmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{vmatrix} = 1$

 (Two row exchanges to obtain the identity.)

3. (5 points) The matrix $A = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 2 & 1 & 1 & 2 \\ 4 & 2 & 1 & 1 \\ 6 & 3 & 1 & 2 \end{pmatrix}$ has determinant $|A| = -2$.

 (a) (1 point) Is A invertible? *Explain your answer.*

 Solution: Yes, because the determinant is nonzero. A matrix is singular if and only if its determinant is zero.
(b) (1 point) Is there any \(b \in \mathbb{R}^4 \) such that \(Ax = b \) does not have a solution? If so, give an example. If not, explain why.

Solution: No, there is always a solution, because \(A \) is invertible. In fact, \(x = A^{-1}b \) is the unique solution.

(c) (3 points) Use Cramer’s rule to compute \(x_4 \) such that \(A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 3 \end{pmatrix} \).

Solution: Using a column operation and two cofactor expansions:

\[
|B_4| = \begin{vmatrix} 1 & 0 & 2 & 1 \\ 2 & 1 & 1 & 0 \\ 4 & 2 & 1 & 0 \\ 6 & 3 & 1 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 3 & 1 & 3 \end{vmatrix} = 3 \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = -3.
\]

Therefore,

\[x_4 = \frac{|B_4|}{|A|} = -\frac{3}{2} = \frac{3}{2} \]

4. (7 points) This question concerns the matrix \(D = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \) and the vector \(b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \).

(a) (3 points) Find three orthonormal vectors \(q_1, q_2, q_3 \) in \(\mathbb{R}^3 \) such that \(C(D) = \text{Span}(q_1, q_2) \).

Solution: Apply Gram-Schmidt to the columns of the invertible matrix

\[
D' = (a_1 \ a_2 \ a_3) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}
\]

and thus obtain orthonormal vectors \(q_1, q_2, q_3 \) with the first two spanning \(C(D) \).

\[
A_1 = a_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}
\]

\[
A_2 = a_2 - \frac{A_1^T a_2}{A_1^T A_1} A_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{2}{3} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}
\]

\[
A_3 = a_3 - \frac{A_1^T a_3}{A_1^T A_1} A_1 - \frac{A_2^T a_3}{A_2^T A_2} A_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \frac{1}{6} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}
\]
\[q_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad q_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \quad q_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \]

(b) (2 points) There is no solution to \(Dx = b \). Find the least squares approximate solution \(\hat{x} \).

Solution:
\[
\hat{x} = (D^T D)^{-1} D^T b = \left[\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 \end{pmatrix} \right]^{-1} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 6 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}
\]

As a check, notice that the error vector \(\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \) is orthogonal to both columns of \(D \), as it should be.

(c) (1 point) What is the projection of \(b \) onto \(C(D) \)?

Solution:
\[
p = D\hat{x} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}
\]

(d) (1 point) What is the projection of \(b \) onto \(C(D)^\perp \)?

Solution:
\[
e = b - p = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}
\]

5. (6 points)

(a) (1 point) Suppose \(Q \) is an orthogonal \(n \times n \) matrix. Is \(\lambda = 0 \) an eigenvalue of \(Q \)? Explain your answer.

Solution: A matrix with zero as an eigenvalue is singular (since the eigenvector is in the null space), but an orthogonal matrix is invertible (in fact, \(Q^{-1} = Q^T \)). Therefore, zero is not an eigenvalue of \(Q \).
(b) (3 points) Find the eigenvalues and eigenvectors of the matrix \[
\begin{pmatrix}
5 & 0 & 1 \\
0 & 5 & 0 \\
1 & 0 & 5
\end{pmatrix}
\].

Solution: This matrix is \(5I + A\), where \(A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}\).

Clearly \(\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\) is in the null space of \(A\), so it is an eigenvector of \(A\) with \(\lambda = 0\).

Since the matrix \(A\) switches the first and last components of a vector (while setting the middle equal to zero), it also has eigenvalues \(\lambda = 1\) and \(\lambda = -1\) with eigenvectors \(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}\) and \(\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}\). These are similar to the case of the \(2 \times 2\) permutation matrix \(P_{12}\).

Adding \(5I\) to a matrix keeps the eigenvectors the same but adds 5 to each eigenvalue. Thus for the matrix in question:

\[
\begin{array}{c|ccc}
\lambda & 4 & 5 & 6 \\
\hline
x & \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} & \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}
\end{array}
\]

As a check, notice that the sum of the eigenvalues is 15, and the product is 120, which agree with the trace and determinant of the given matrix (respectively).

Note: One could also find these eigenvalues and eigenvectors by the usual algorithm—computing the characteristic polynomial, finding its roots, then finding bases for the eigenspaces. The solution given here is a possible shortcut, based on knowledge of the \(2 \times 2\) permutation matrix.

(c) (2 points) Let \(V\) be the subspace of \(\mathbb{R}^4\) consisting of all vectors orthogonal to \(\begin{pmatrix} 15 \sqrt{2} \\ -520 \\ 2008 \sqrt{17} \\ -15 \sqrt{34} \end{pmatrix}\).

Let \(P\) be the \(4 \times 4\) projection matrix onto \(V\). Compute \(\text{tr}(P)\) and \(\det(P)\), and explain your reasoning.

Solution: Note that \(\text{dim}(V) = 3\). Since \(P\) is a projection onto a 3-dimensional subspace of \(\mathbb{R}^4\), its eigenvalues are 0, 1, 1, 1 (listed with multiplicity). Therefore

\[
\text{tr}(P) = 0 + 1 + 1 + 1 = 3
\]

\[
\det(P) = 0 \cdot 1 \cdot 1 \cdot 1 = 0.
\]

Of course it would be impractical to calculate these (by hand) from the actual matrix

\[
P = \frac{1}{4302931}
\begin{pmatrix}
4302481 & 7800 \sqrt{2} & -30120 \sqrt{2} & -15 \sqrt{34} \\
7800 \sqrt{2} & 4032531 & 1044160 & 520 \sqrt{17} \\
-30120 \sqrt{2} & 1044160 & 270867 & -2008 \sqrt{17} \\
-15 \sqrt{34} & 520 \sqrt{17} & -2008 \sqrt{17} & 4302914
\end{pmatrix}
\].