1 Change of basis

Assume that V is an n-dimensional vector space. Let $\mathcal{B} = \{b_1, b_2, \ldots, b_n\}$ be a basis in V, as in the book [1].

Notation: we denote \mathcal{B} by $[b_1 \; b_2 \; \ldots \; b_n]$. Then any vector $x \in V$ can be uniquely presented as $x = a_1 v_1 + a_2 v_2 + \ldots + a_n v_n$. Lay’s notation: $x_\mathcal{B} := \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$.

Then we write

$$x = a_1 v_1 + a_2 v_2 + \ldots + a_n v_n = v_1 a_1 + \ldots + v_n a_n = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}.$$ (1.1)

$$[b_1 \; b_2 \; \ldots \; b_n] x_\mathcal{B} = [b_1 \; b_2 \; \ldots \; b_n] \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}.$$ (1.2)

We now introduce another basis $C := \{c_1, \ldots, c_n\}$ in V.

The transition matrix from the basis \mathcal{B} to the basis C, denoted in Lay as $P_{C \leftarrow \mathcal{B}}$ is formally given by the identity:

$$[b_1 \; b_2 \; \ldots \; b_n] = [c_1 \; c_2 \; \ldots \; c_n] P_{C \leftarrow \mathcal{B}}.$$ (1.2)

In words, the column j of the matrix $P_{C \leftarrow \mathcal{B}}$ is $[b_j]_C$, the coordinate vector of b_j with in the basis C. That is,

$$P_{C \leftarrow \mathcal{B}} = [[b_1]_C \; [b_2]_C \; \ldots \; [b_n]_C].$$ (1.3)

Example 1, [1, p’ 239]:

$$b_1 = 4c_1 + c_2, \quad b_2 = -6c_1 + c_2.$$ Then

$$P_{C \leftarrow \mathcal{B}} = \begin{bmatrix} 4 & -6 \\ 1 & 1 \end{bmatrix}.$$ (1.4)

Theorem 1.1 Let V be an n dimensional vector space with bases $\mathcal{B} = \{b_1, b_2, \ldots, b_n\}$ and $C := \{c_1, \ldots, c_n\}$.

1. Assume that the transition matrix from the basis \mathcal{B} to C is given by the matrix $P_{C \leftarrow \mathcal{B}}$ that satisfies (1.2). Then the transition matrix from the basis C to \mathcal{B} is given by the inverse of the matrix $P_{C \leftarrow \mathcal{B}}$

$$P_{\mathcal{B} \leftarrow C} = P_{C \leftarrow \mathcal{B}}^{-1}.$$ (1.4)
2. Assume that the coordinates of a vector \(x \) are \([x]_B\) and \([x]_C\) in the bases \(B \) and \(C \) respectively. Then

\[
[x]_C = P_{C\leftarrow B}[x]_B, \quad [x]_B = P_{C\leftarrow B}^{-1}[x]_C = P_{B\leftarrow C}[x]_C. \quad (1.5)
\]

Proof. 1: Multiply both sides of \((1.2)\) by \(P_{C\leftarrow B}^{-1} \) form the right to deduce that

\[
[c_1 \; c_2 \cdots c_n] = [b_1 \; b_2 \cdots b_n]P_{C\leftarrow B}^{-1} = [b_1 \; b_2 \cdots b_n]P_{B\leftarrow C}.
\]

2: Multiply both sides of \((1.2)\) by \([x]_B\) and use \((1.1)\) to obtain:

\[
x = [b_1 \; b_2 \cdots b_n][x]_B = [c_1 \; c_2 \cdots c_n](P_{C\leftarrow B}[x]_B) = [c_1 \; c_2 \cdots c_n][x]_C.
\]

This shows the first equality in \((1.5)\). Use the equality \((1.4)\) to deduce the second equality of \((1.5)\). \(\square\)

Hence in the above Example 1:

\[
P_{B\leftarrow C} = \begin{bmatrix} 4 & -6 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 0.1 & 0.6 \\ -0.1 & 0.4 \end{bmatrix}.
\]

Furhtermore, suppose as in Example 1 \(x = 3b_1 + b_2 \). So \([x]_B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}\). Then \((1.5)\) yields:

\[
[x]_C = P_{C\leftarrow B}[x]_B = \begin{bmatrix} 4 & -6 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}.
\]

Theorem 1.2 Let \(V \) be an \(n \) dimensional vector space with three bases \(A = \{a_1, \ldots, a_n\}, B = \{b_1, \ldots, b_n\}, C := \{c_1, \ldots, c_n\} \). Assume that \(P_{A\leftarrow B} \) and \(P_{A\leftarrow C} \) are the transition matrix from the basis \(B \) to \(A \) and \(C \) to \(A \) respectively. Then the transition matrix from \(B \) to \(C \) is given be the formula

\[
P_{C\leftarrow B} = P_{A\leftarrow C}^{-1}P_{A\leftarrow B}. \quad (1.6)
\]

Moreover, to compute \(P_{A\leftarrow C}^{-1}P_{A\leftarrow B} \) consider the following \(n \times (2n) \) matrix \(F := [P_{A\leftarrow C} \; P_{A\leftarrow B}] \). Perform ERO (elementry row operations) to bring \(F \) to its RREF, which is \([I_n \; G]\). Then \(G = P_{A\leftarrow C}^{-1}P_{A\leftarrow B} \).

Proof. Observe that

\[
[b_1, \ldots, b_n] = [a_1, \ldots, a_n]P_{A\leftarrow B}, \quad [c_1, \ldots, c_n] = [a_1, \ldots, a_n]P_{A\leftarrow C}.
\]

Use the second equality to deduce that \([a_1, \ldots, a_n] = [c_1, \ldots, c_n]P_{A\leftarrow C}^{-1} \). Subsitute this equality to the frist equality in the above equalities to obtain

\[
[b_1, \ldots, b_n] = [a_1, \ldots, a_n]P_{A\leftarrow B} = [a_1, \ldots, a_n](P_{A\leftarrow C}^{-1}P_{A\leftarrow B}).
\]

This proves \((1.6)\).

Consider the matrix \(F := [P_{A\leftarrow C} \; P_{A\leftarrow B}] \). Since \(P_{A\leftarrow C} \) the RREF of \(F \) is \([I_n \; G]\). It is obtaines by considering the product

\[
P_{A\leftarrow C}^{-1}F = [P_{A\leftarrow C}^{-1}P_{A\leftarrow C} \; P_{A\leftarrow C}^{-1}P_{A\leftarrow B}] = [I_n \; G].
\]
Hence $G = P_{A→C}^{-1}P_{A→B}$. □

Consider Example 2 [1, p'241]:

\[b_1 = \begin{bmatrix} -9 \\ 1 \end{bmatrix}, \quad b_2 = \begin{bmatrix} -5 \\ -1 \end{bmatrix}, \quad c_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \quad c_2 = \begin{bmatrix} 3 \\ -5 \end{bmatrix}. \]

Observe that implicitly $A := \{ e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \}$ is the standard basis in \mathbb{R}^2.

Thus

\[P_{A→B} = \begin{bmatrix} -9 & -5 \\ 1 & -1 \end{bmatrix}, \quad P_{A→C} = \begin{bmatrix} 1 & 3 \\ -4 & -5 \end{bmatrix}. \]

Hence

\[F = \begin{bmatrix} 1 & 3 & -9 & -5 \\ -4 & -5 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 6 & 4 \\ 0 & 1 & -5 & -3 \end{bmatrix} \]

Thus $P_{C→B} = \begin{bmatrix} 6 & 4 \\ -5 & -3 \end{bmatrix}$.

1.1 Another example

Let $B = \{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \}, C = \{ \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \end{bmatrix} \}$

Find the transition matrix from the basis C to basis B.

Solution: Introduce the standard basis $A = \{ e_1, e_2 \}$ in \mathbb{R}^2. So $[b_1 \ b_2] = [e_1 \ e_2] [c_1 \ c_2] = [e_1 \ e_2] [3 \ 4 \ 4 \ 5]$. Hence the transition matrix is $[1 \ 1 \ 2 \ 3]^{-1} [3 \ 4 \ 4 \ 5]$.

To find this matrix get the RREF of $[1 \ 1 \ | \ 3 \ 4 \ 4 \ 5]$ which is $[1 \ 0 \ | \ 5 \ 7 \ \ -2 \ -3]$.

Answer $[5 \ 7 \ -2 \ -3]$

References