1. (20 pts) Let Q_k be the k-hypercube. Assume that Q_k has a Hamiltonian cycle. Show that for each $2 \leq p \leq k$, Q_k has a cycle of length 2^p.

2. Let $D = (V, A)$ be a directed graph.
 (a) (5 pts) Give the definition of: D is strongly connected.
 (b) (15 pts) Assume that D is strongly connected, has no loops, and between any two distinct vertices u, v there is at most one arc, either (u, v) or (v, u) in A, but not both. (It is possible that there no arc between u and v.) Show that each v lies on a directed cycle of length 3 at least.

3. (20 pts.) Let $T = (G, E)$ be a tree. Show that if T has a vertex of degree $k \geq 2$, then it has at least k leaves.

4. (20 pts.) Let $G = (V, E)$ be a bipartite graph with the partition of V to X and Y. Assume that every subset $S \subseteq X$ satisfies
 \[|S| \leq |N(S)| + 1. \]
 Show that G has a matching that saturates every vertex of X with the exception of at most one vertex.

5. Let $G = (V, E)$ be an undirected graph. Denote $n(G) := |V|$.
 (a) (6 pts.) Define: independent set, maximum independent set (its size $\alpha(G)$), edge cover, minimum edge cover (its size $\beta'(G)$).
 (b) (14 pts.) Show $\beta'(G) \geq \alpha(G)$ if G has no isolated vertices.