Problem 1.

1. Find the determinant of A:

$$A = \begin{bmatrix} -1 & 2 & 3 & 0 \\ 3 & 4 & 3 & 0 \\ 11 & 4 & 6 & 6 \\ 4 & 2 & 4 & 3 \end{bmatrix}$$

2. Let

$$A = \begin{bmatrix} 3 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & -3 & s \end{bmatrix}$$

 (a) Find the adjoint (adjugate) matrix of A.

 (b) For which values of s is A not invertible.

 (c) Find the inverse of A using the adjoint matrix for those values of s for which A is invertible.

3. Let

$$A = \begin{bmatrix} 3 & 2 \\ 5 & 0 \end{bmatrix}$$

 Consider a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ given by $T(x) = Ax$.

 What is the area of the image of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2}$? (Recall that the area of this ellipsoid is πab.)

Problem 2.

1. Find if the following sets are subspaces in a given vector space:

 (a) All vectors $x = (x_1, x_2, x_3)^T$ satisfying $x_1 x_2 x_3 = 0$.

 (b) All polynomial of degree n at most satisfying the condition $p(-1) = 0$.

2. Let v_1, v_2, v_3, v_4 be the following vectors in \mathbb{R}^4:

 $$v_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 3 \\ -1 \\ -5 \\ 1 \end{bmatrix}, \quad v_4 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}.$$

 Is v_1, v_2, v_3, v_4 a basis in \mathbb{R}^4? If not find a basis in span(v_1, v_2, v_3, v_4).

Problem 3. Let

$$A = \begin{bmatrix} -1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{bmatrix}$$

1. The rank of A.

2. The nullity of A (the dimension of the null space of A).

3. The rank of A^T.

4. The nullity of A^T.

5. A basis in the column space of A.

6. A basis in the row space of A.

7. A basis in the null space of A.
8. A basis in the row space of A^\top.
9. A basis in the column space of A^\top.
10. A basis in the null space of A^\top.

Problem 4. Let P_2 be the vector space of all polynomials of degree at most two. Let $B = \{1, t, t^2\}$ be the standard basis in P_2.

1. Let $T : P_2 \to P_2$ be the linear transformation: $T(f) = -f'$, where f' is the derivative of f. Find the matrix of T relative to B.
2. Let $C = \{1 + t, t + t^2, 1 - t - t^2\}$.
 (a) Find change-of-coordinate matrix from C to B ($P_{B\leftarrow C}$).
 (b) Find the coordinates of $1 + t + t^2$ in basis C.

Problem 5. Let $A = \begin{bmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{bmatrix}$.

1. Is A a stochastic matrix?
2. Diagonalize A.
3. Find $\lim_{k \to \infty} A^k$