1. (20 pts) Consider the system of equations $Ax = b$ where:

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

(a) Compute det A. Is A singular or nonsingular?
(b) Compute A^{-1} if possible.
(c) Write the row reduced echelon form of A.
(d) Find all solutions to the system $Ax = b$.

2. (20 pts) Consider the following matrix A:

$$A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$$

(a) Find the nullspace of A.
(b) Do the columns of A form a spanning set for \mathbb{R}^2. Clearly explain why or why not.

3. (20 pts) Do the vectors below form a basis for \mathbb{R}^3? If so, explain. If not, remove as many vectors as you need to form a basis and show that the resulting set of vectors form a basis for \mathbb{R}^3.

$$x_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad x_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad x_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad x_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

4. (20 pts) Consider the following mapping $L : \mathbb{R}^2 \to \mathbb{R}^3$:

$$L(x) = \begin{bmatrix} 2x_1 \\ -x_2 \\ x_1 + x_2 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

(a) Show that L is a linear transformation.
(b) Find a matrix representation for L using the standard basis for \mathbb{R}^3 and the following basis vectors for \mathbb{R}^2: $u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$.

5. (20 pts) Let $Y = \text{Span} \{x_1, x_2\}$ where: $x_1 = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}, \quad x_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$. Find Y^\perp, the orthogonal complement of Y.

6. (20 pts) Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$. Find the QR decomposition of A.

7. (20 pts) Find a matrix X and a diagonal matrix D such that $A = XDX^{-1}$, where

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 3 & 0 \\ -2 & 0 & 1 \end{bmatrix}.$$
8. (20 pts) Find the solution to the system of first order ODEs:
\[
\frac{dy_1}{dt} = y_1 - 4y_2, \quad y_1(0) = 3
\]
\[
\frac{dy_2}{dt} = -y_2, \quad y_2(0) = 3.
\]

9. (20 pts.) Find the least square solution of the system \(Ax = b \):
\[
\begin{align*}
x_1 + x_2 &= 3 \\
x_1 - x_2 &= 1 \\
x_1 + 3x_2 &= -1
\end{align*}
\]
Use this solution to find the projection of \(b \) on the column space of the coefficient matrix \(A \).

10. (20 pts) Let \(A \) be the following symmetric matrix
\[
A = \begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
Find an orthogonal matrix \(Q \) and a diagonal matrix \(D \) such that \(A = QDQ^\top \).