2.18 - Give an example.

2.21 - Work it out.

2.22 - Build a new digraph \(\tilde{G} = (\tilde{V}, \tilde{E}) \), where \(\tilde{V} \) has vertices \(R, S, \) and all other vertices \(\tilde{V} = V \setminus \{R, S\} \). If \(u, w \in \tilde{V} \), then \(uw \in \tilde{E} \) if there exists an edge from some vertex \(r \) to \(u \). Then \(\tilde{E} \) is the minimum of \(E \).

Do the same construction for all edges involving vertices \(R, S, R, U, S, \) and \(U, V \).

Now find the minimal path in \(G \) from \(R \) to \(S \).

2.23 - If \(u, v \) incident to the following two edges:

\[\text{cow} \] \[\text{cow} \]

Then delete \(w \) and make

\[\text{cow} \]

\[\text{cow} + \text{cow} = \text{cow + cow} \]

2.24 - If \(w \) incident to the following two edges:

\[\text{cow} \]

Delete \(w \) and make

\[\text{cow} \]

\[\text{cow} + \text{cow} = \text{cow + cow} \]
Put the following acyclic graph:

A cycle graph on $n+1$ vertices with $n+1$ edges are:

where a_1, a_2, \ldots, a_n.

$2.2.2$ odd edges can $\alpha \beta \gamma \delta$. To

$2.3.4 \gamma \beta \alpha \delta$. To

$2.4.0$