Show all work. Unjustified answer yields no credit. Assume that \(G = (V, E) \) is a graph.

1. (2 points) Define a trail in \(G \).

2. (6 points) Assume that \(G \) has a maximal nonclosed trail. What is the minimal number of vertices of odd degree \(G \) has? (Justify!) Give an example of \(G \) where this minimum is achieved.

3. (2 points) Assume that \(G \) is a regular graph. When \(G \) is Eulerian?

\[\text{1. A trail in } G \text{ is a walk that: Each edge appears once. (No edge is repeated)} \]

\[\text{2. } G \text{ has to have at least two odd degree vertices: the beginning (} u_0 \text{) and the end vertex (} u_k \text{) of a maximal nonclosed trail } T: u_0 \rightarrow u_1 \rightarrow \ldots \rightarrow u_k \text{.} \]

\[\text{3. } G \text{ is } k\text{-regular and } k \text{ is even, and connected.} \]

\[\text{Example } G \text{ is a path } u_0 \longrightarrow u_1 \longrightarrow \ldots \longrightarrow u_k \]

\[\text{So } G(T) = G \text{ and the only odd vertices are } u_0 \text{ and } u_k. \]