Most of the problems are from [1] unless stated otherwise.

1. Problem 2.2.7, page 92. Let K_n be a complete graph on n vertices. By symmetry, each edge appears in $k(n)$ of spanning trees in K_n. Let us count the number of edges appearing in all spanning trees of K_n in two ways. First, by Cayley’s theorem there are n^{n-2} spanning trees. Each tree has $n-2$ edges. Hence the total number of edges in n^{n-2} spanning trees is $(n-1)^n$. On the other hand there are $n(n-1)$ edges in K_n. Each one appears in $k(n)$ spanning trees. Hence the total number of edges in all spanning trees is $n(n-1)k(n)$. Thus $(n-1)^n = n(n-1)k(n)$. Therefore $k(n) = 2^{n-3}$. Finally the number of spanning trees in $K_n - e$ is $n^{n-2} - 2n^{n-3} = n^{n-3}(n-2)$.

2. Problem 2.2.10, page 92.

(a) $m = 1$. $K_{2,1}$ is a path on 3 vertices. It has a unique spanning tree $K_{2,1}$.

(b) $m \geq 2$. Let T be a spanning tree of $K_{2,m} = (V,E)$, where $X \cup Y$, $X = \{u,v\}$ and $Y = [m] := \{1, \ldots, m\}$. It will have $m+1$ edges. So u has to be connected to $p \geq 1$ vertices in Y and v is connected to $q \geq 1$ vertices in Y and $p+q = m+1$. Hence u and v has exactly one common neighbor $w \in Y$. Vice versa, choose $w \in Y$ and connected it to u and v. Let $Y' := Y - \{w\}$. Divide Y' to a union of two disjoint sets $Y_1 \cup Y_2$, where $|Y_1| = p - 1, |Y_2| = q - 1$. (Note that Y_i may be empty.) Then connect all the vertices of Y_1 to u and all the vertices of Y_2 to v. This is a spanning tree.

The number of spanning trees is. The choice of w: m choices. All subsets Y_1 of Y' is 2^{m-1}. (Each element in Y' has two choices to be or not to be in Y_1.) Hence the number of spanning trees is $m2^{m-1}$. (Still true for $m = 1$)

The number of nonisomorphic trees depends on the value of p. By switching u and v we can assume that $p \leq \lceil \frac{m+1}{2} \rceil$. (Recall $p + q = m + 1$!) So the number of nonisomorphic trees is $\lceil \frac{m+1}{2} \rceil$.

References

 http://www.ecp6.jussieu.fr/pageperso/bondy/books/gtwa/gtwa.html

 http://lib.myilibrary.com.proxy.cc.uic.edu/Open.aspx?id=134028&loc=&srch=undefined&src=0