Chapter 5

6. Let \(\alpha = (a_1 \ a_2 \ a_3) \) and \(\beta = (a_4 \ a_5 \ a_6 \ a_7 \ a_8) \) be disjoint cycles in \(A_8 \). (We know \(\alpha, \beta \in A_8 \) since \(\alpha \) and \(\beta \) each decompose into an even number of 2-cycles, for example, \(\alpha = (a_1 \ a_3)(a_1 \ a_2) \) and \(\beta = (a_4 \ a_8)(a_4 \ a_7)(a_4 \ a_6)(a_4 \ a_5) \).

Notice that \(|\alpha| = 3\), since
\[
\alpha^2 = (a_1 \ a_2 \ a_3)(a_1 \ a_2 \ a_3) = (a_1 \ a_3 \ a_2) \neq \varepsilon
\]
but
\[
\alpha^3 = (a_1 \ a_2 \ a_3)(a_1 \ a_2 \ a_3)(a_1 \ a_2 \ a_3) = (a_1 \ a_3 \ a_2)(a_1 \ a_2 \ a_3) = (a_1)(a_2)(a_3) = \varepsilon,
\]
where \(\varepsilon \) is the identity in \(A_8 \).

Also notice that \(|\beta| = 5\) since
\[
\beta^5 = (a_4 \ a_5 \ a_6 \ a_7 \ a_8)(a_4 \ a_5 \ a_6 \ a_7 \ a_8)
\]
\[
= (a_4 \ a_5 \ a_6 \ a_7 \ a_8)(a_4 \ a_5 \ a_6 \ a_7 \ a_8)(a_4 \ a_5 \ a_6 \ a_7 \ a_8)(a_4 \ a_5 \ a_6 \ a_7 \ a_8)
\]
\[
\beta^5 \neq \varepsilon
\]
\[
= (a_4 \ a_5 \ a_6 \ a_7 \ a_8)(a_4 \ a_5 \ a_6 \ a_7 \ a_8)(a_4 \ a_5 \ a_6 \ a_7 \ a_8)
\]
\[
\beta^5 \neq \varepsilon
\]
\[
= (a_4)(a_5)(a_6)(a_7)(a_8) = \varepsilon
\]
By Theorem 5.3, then, \(|\alpha\beta| = \text{lcm}(3, 5) = 15\).

18. a) \(\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 1 & 7 & 8 & 6 \end{bmatrix} = (1 \ 2 \ 3 \ 4 \ 5)(6 \ 7 \ 8) \)

and
\[
\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4 \end{bmatrix} = (2 \ 3 \ 8 \ 4 \ 7)(5 \ 6),
\]
so \(\alpha\beta = (1 \ 2 \ 3 \ 4 \ 5)(6 \ 7 \ 8)(2 \ 3 \ 8 \ 4 \ 7)(5 \ 6) = (1 \ 2 \ 4 \ 8 \ 5 \ 7 \ 3 \ 6) \).

b) Here are two different ways of decomposing each of \(\alpha, \beta, \) and \(\alpha\beta \) into 2-cycles:
\[
\alpha = (1 \ 5)(1 \ 4)(1 \ 3)(1 \ 2)(6 \ 8)(6 \ 7) = (1 \ 2)(2 \ 3)(3 \ 4)(4 \ 5)(6 \ 7)(7 \ 8)
\]
\[
\beta = (2 \ 7)(2 \ 4)(2 \ 8)(2 \ 3)(5 \ 6) = (2 \ 3)(3 \ 8)(8 \ 4)(4 \ 7)(5 \ 6)
\]
\[
\alpha\beta = (1 \ 6)(1 \ 3)(1 \ 7)(1 \ 5)(1 \ 8)(1 \ 4)(1 \ 2) = (1 \ 2)(2 \ 4)(4 \ 8)(8 \ 5)(5 \ 7)(7 \ 3)(3 \ 6)
\]
22. Let \(r, s, t, \) and \(u \) be the number of 2-cycles into which \(\alpha, \beta, \alpha^{-1}, \) and \(\beta^{-1} \) decompose, respectively.

Claim. Either \(r \) and \(t \) are both even or \(r \) and \(t \) are both odd; either \(s \) and \(u \) are both even or \(s \) and \(u \) are both odd.

Proof of Claim (by contradiction). Suppose \(r \) is even and \(t \) is odd. Then \(\alpha \alpha^{-1} \) decomposes into \(r + t \) 2-cycles. Note that \(r + t \) is odd since ”even” + ”odd” = ”odd.” But \(\alpha \alpha^{-1} \) is the identity in \(S_n \), which is an even permutation, so this is a contradiction. The same proof works if we assume \(r \) is odd and \(t \) is even, since ”odd” + ”even” = ”odd” as well. If we replace \(r \) with \(s \) and \(t \) with \(u \), then we have proved the second half of the claim.

Now observe that \(\alpha^{-1} \beta^{-1} \alpha \beta \) decomposes into \(t + u + r + s \) 2-cycles. Since \(t \) and \(r \) are both even or both odd, \(t + r \) is even. Similarly, \(s + u \) is even. Thus, \(t + u + r + s \) is even, hence \(\alpha^{-1} \beta^{-1} \alpha \beta \) is an even permutation.

\[
(a_1 \ a_2 \ \cdots \ a_n)^{-1} = (a_1 \ a_n \ a_{n-1} \ \cdots \ a_2) \text{ since } (a_1 \ a_2 \ \cdots \ a_n)(a_1 \ a_n \ a_{n-1} \ \cdots \ a_2) = \]
\[
(a_1)(a_2) \cdots (a_{n-1})(a_n).
\]

Chapter 6.

2. We will show that \(\text{Aut}(\mathbb{Z}) = \{ \varphi_1, \varphi_{-1} \} \), where \(\varphi_1 \) is the identity map from \(\mathbb{Z} \) to \(\mathbb{Z} \) and we define \(\varphi_{-1} : \mathbb{Z} \rightarrow \mathbb{Z} \) as

\[
\varphi_{-1}(k) = \begin{cases}
-k, & \text{if } k \neq 0 \\
0, & \text{if } k = 0
\end{cases}
\]

We know that the identity map is an automorphism, so we show that \(\varphi_{-1} \) is an automorphism.

Let \(k, \ell, m \in \mathbb{Z} \).

One-to-one: If \(\varphi_{-1}(k) = \varphi_{-1}(\ell) \), then \(-k = -\ell \Rightarrow k = \ell \).

Onto: If \(m \in \mathbb{Z} \), then \(\varphi_{-1}(m) = -(m) = m \).

Operation-preserving: \(\varphi_{-1}(k + \ell) = -(k + \ell) = (-k) + (-\ell) = \varphi_{-1}(k) + \varphi_{-1}(\ell) \).

Inverse-preserving: \(\varphi_{-1}(k^{-1}) = \varphi_{-1}(-k) = -(-k) = \varphi_{-1}(k)^{-1} \).

We now argue that there are no other automorphisms of \(\mathbb{Z} \). As seen in class, an automorphism of a cyclic group is determined by its image of a generator, so we need only consider the possible images of 1. Suppose that \(d : \mathbb{Z} \rightarrow \mathbb{Z} \) is an automorphism. Then \(1 \in \langle d(1) \rangle \) if and only if \(d(1) \) divides 1, which is to say that \(d(1) = 1 \) or \(d(1) = -1 \). Thus, \(d = \varphi_1 \) or \(d = \varphi_{-1} \).

The multiplication in \(\text{Aut}(\mathbb{Z}) \) works as follows: \(\varphi_1 \circ \varphi_1 = \varphi_1 \), \(\varphi_1 \circ \varphi_{-1} = \varphi_{-1} \), \(\varphi_{-1} \circ \varphi_1 = \varphi_{-1} \), and \(\varphi_{-1} \circ \varphi_{-1} = \varphi_1 \). (All of these are straightforward to check.)

14. By Theorem 6.5, \(\text{Aut}(\mathbb{Z}_6) \) is isomorphic to \(U(6) = \{1,5\} \) via the correspondence \(\varphi_1 \leftrightarrow 1 \) and \(\varphi_5 \leftrightarrow 5 \). More specifically, \(\varphi_1(1) = 1 \), so that \(\varphi_1 \) is the identity map \(\mathbb{Z}_6 \rightarrow \mathbb{Z}_6 \), and \(\varphi_5(1) = 5 \).

The group structure of \(\text{Aut}(\mathbb{Z}_6) \) is as follows: \(\varphi_1 \circ \varphi_1 = \varphi_1 \), \(\varphi_1 \circ \varphi_5 = \varphi_5 \circ \varphi_1 = \varphi_5 \), and \(\varphi_5 \circ \varphi_5 = \varphi_1 \). To verify this last fact, notice that \(\varphi_6(\varphi_5(1)) = \varphi_5(5) = \varphi_5(1+1+1+1+1+1) = \varphi_5(1) + \varphi_5(1) + \varphi_5(1) + \varphi_5(1) + \varphi_5(1) = 5 + 5 + 5 + 5 + 5 = 1 \text{ (mod 6)} \), and so \(\varphi_5 \circ \varphi_5 \) is the identity isomorphism.