1 Elementary number theory

We assume the existence of the natural numbers

\[\mathbb{N} = \{1, 2, 3, \ldots\} \]

and the integers

\[\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}, \]

along with their most basic arithmetical and ordering properties.

For example, we assume the truth of statements such as

- "For all integers \(a\) and \(b\), both \(a + b\) and \(ab\) are integers."
- "\(0 < 1\)"
- "For all integers \(a\) and \(b\) we have \(a + b = b + a\)."
- "For any pair of integers \(a\) and \(b\), exactly one of the following is true: \(a = b\), \(a < b\) or \(a > b\)."

Definition 1. Let \(a\) and \(b\) be integers. We say \(a\) divides \(b\) if there exists an integer \(k\) such that \(ka = b\).\(^1\)

Notation 2. The notation \(a \mid b\) means “\(a\) divides \(b\).”

Proposition 3. Let \(a\), \(b\) and \(c\) be integers. If \(a \mid b\) and \(a \mid c\) then \(a \mid (b + c)\).

Proposition 4. Let \(a\), \(b\) and \(c\) be integers. If \(a \mid b\) and \(a \mid c\) then \(a \mid (b - c)\).

Conjecture 5. Let \(a\), \(b\) and \(c\) be integers. If \(a \mid (b + c)\), then \(a \mid b\) or \(a \mid c\).

Proposition 6. Let \(a\), \(b\) and \(c\) be integers. If \(a \mid b\) then \(a \mid bc\).

Proposition 7. Let \(d\), \(a\), \(b\), \(x\) and \(y\) be integers. If \(d \mid a\) and \(d \mid b\), then \(d \mid (ax + by)\).

Proposition 8. Let \(a\), \(b\) and \(c\) be integers. If \(a \mid b\) and \(b \mid c\) then \(a \mid c\).

Proposition 9. \(2 \nmid 1\).

\(^{1}\text{We will prove later that “}\(a\) divides \(b\)\)” is equivalent to “the rational number } \frac{b}{a} \text{ is an integer.” However, that is not our definition. We don’t know what a rational number is yet.}