Math 502
Problem Set #6
Due November 18

Problem 1: Prove there is \(e \in \mathbb{N} \) such that \(\phi_e(x) = e \) for all \(x \in \mathbb{N} \).

Problem 2: Set \(\text{Ext} := \{ e \in \mathbb{N} : \phi_e \text{ is extendible to a total computable function.} \} \). Prove that:

(a) \(\text{Ext} \) is \(\Sigma_3 \).
(b) \(\text{Ext} \neq \mathbb{N} \).

Problem 3: Show that if \(A \leq_m B \) and \(A \) is productive, then \(B \) is productive.

Problem 4: Show that \(\text{Tot} \) and \(\neg \text{Tot} \) are both productive.

Problem 5: Show (without using Post’s theorem) that \(\neg \text{Tot} \) is r.e. in \(K \).

Problem 6: Find \(A \in 0' \) such that neither \(A \) nor \(\neg A \) are r.e.

Problem 7: Give examples of sets \(A, B, C \subseteq \mathbb{N} \) such that \(A \) is r.e. in \(B \) and \(B \) is r.e. in \(C \) but \(A \) is not r.e. in \(C \).

Given any set \(A \subseteq \mathbb{N} \), one can define the relativized arithmetic hierarchy with respect to \(A \). For example, the \(\Sigma_1^A \) sets are just the sets that are r.e. in \(A \). Given this, one can formulate and prove a relativized version of Post’s Theorem. In the next problem, you may use this relativized version of Post’s Theorem.

Problem 8: A degree \(a \) is said to be low if \(a \leq 0' \) but \(a' = 0' \). A set \(A \) is low if its Turing degree is low. For \(A \leq_T \emptyset' \), prove that the following are equivalent:

1. \(A \) is low;
2. \(\Sigma_1^A \subseteq \Pi_2 \);
3. \(A' \leq_1 \neg \emptyset'' \).