Data Parallelism and Matrix Multiplication

1. Data Parallelism
 - matrix-matrix multiplication
 - CUDA program structure

2. Code for Matrix-Matrix Multiplication
 - linear address system for 2-dimensional array
 - defining the kernel
 - the main program

3. Two Dimensional Arrays of Threads
 - using threadIdx.x and threadIdx.y

4. Examining Performance
 - counting flops

MCS 572 Lecture 31
Introduction to Supercomputing
Jan Verschelde, 2 November 2016
Data Parallelism and Matrix Multiplication

1. Data Parallelism
 - matrix-matrix multiplication
 - CUDA program structure

2. Code for Matrix-Matrix Multiplication
 - linear address system for 2-dimensional array
 - defining the kernel
 - the main program

3. Two Dimensional Arrays of Threads
 - using threadIdx.x and threadIdx.y

4. Examining Performance
 - counting flops
Many applications process large amounts of data. Data parallelism refers to the property where many arithmetic operations can be safely performed on the data simultaneously. Consider the multiplication of matrices A and B: $C = A \cdot B$, with

$$A = [a_{i,j}] \in \mathbb{R}^{n \times m}, \quad B = [b_{i,j}] \in \mathbb{R}^{m \times p}, \quad C = [c_{i,j}] \in \mathbb{R}^{n \times p}.$$

$c_{i,j}$ is the inner product of the ith row of A with the jth column of B:

$$c_{i,j} = \sum_{k=1}^{m} a_{i,k} \cdot b_{k,j}.$$

All $c_{i,j}$’s can be computed independently from each other. For $n = m = p = 1,000$ we have 1,000,000 inner products.
Data parallelism in matrix multiplication

\[c_{i,j} = \sum_{k=1}^{m} a_{i,k} \cdot b_{k,j} \]

**Introduction to Supercomputing (MCS 572)

Data Parallelism & Matrix Multiplication

L-31 2 November 2016 4 / 32
matrix-matrix multiplication on a GPU

Code for a device (the GPU) is defined in functions using the keyword `__global__` before the function definition.

Data parallel functions are called *kernels*.

Kernel functions generate a large number of threads.

In matrix-matrix multiplication, the computation can be implemented as a kernel where each thread computes one element in the result matrix.

To multiply two 1,000-by-1,000 matrices, the kernel using one thread to compute one element generates 1,000,000 threads when invoked.

CUDA threads are much lighter weight than CPU threads: they take very few cycles to generate and schedule thanks to efficient hardware support whereas CPU threads may require thousands of cycles.
Data Parallelism and Matrix Multiplication

1. Data Parallelism
 - matrix-matrix multiplication
 - CUDA program structure

2. Code for Matrix-Matrix Multiplication
 - linear address system for 2-dimensional array
 - defining the kernel
 - the main program

3. Two Dimensional Arrays of Threads
 - using threadIdx.x and threadIdx.y

4. Examining Performance
 - counting flops
CUDA program structure

A CUDA program consists of several phases, executed on
- the host: if no data parallelism,
- the device: for data parallel algorithms.

The NVIDIA C compiler \(\text{nvcc} \) separates phases at compilation:
- Code for the host is compiled on host’s standard C compilers and runs as ordinary CPU process.
- The device code is written in C with keywords for data parallel functions and further compiled by \(\text{nvcc} \).
execution of a CUDA program

CPU code

kernel<<<numb_blocks,numb_threads_per_block>>>(args)

CPU code

grid

block 0 block 1 block \(N - 1 \)
stages in a CUDA program

For the matrix multiplication $C = A \cdot B$:

1. Allocate device memory for A, B, and C.
2. Copy A and B from the host to the device.
3. Invoke the kernel to have device do $C = A \cdot B$.
4. Copy C from the device to the host.
5. Free memory space on the device.
1. Data Parallelism
 - matrix-matrix multiplication
 - CUDA program structure

2. Code for Matrix-Matrix Multiplication
 - linear address system for 2-dimensional array
 - defining the kernel
 - the main program

3. Two Dimensional Arrays of Threads
 - using threadIdx.x and threadIdx.y

4. Examining Performance
 - counting flops
Consider a 3-by-5 matrix stored row-wise (as in C):

\[
\begin{array}{cccccc}
 a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} & a_{0,4} \\
 a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\
 a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\
\end{array}
\]

We will store a matrix as a one dimensional array.
generating a random matrix

```c
#include <stdlib.h>

__host__ void randomMatrix ( int n, int m, float *x, int mode )
/*
 * Fills up the n-by-m matrix x with random
 * values of zeroes and ones if mode == 1,
 * or random floats if mode == 0. */
{
    int i, j, r;
    float *p = x;

    for(i=0; i<n; i++)
        for(j=0; j<m; j++)
        {
            if(mode == 1)
                r = rand() % 2;
            else
                r = ((float) rand())/RAND_MAX;
            *(p++) = (float) r;
        }
}
```
writing a matrix

#include <stdio.h>

__host__ void writeMatrix (int n, int m, float *x)
/*
 * Writes the n-by-m matrix x to screen. */
{
 int i, j;
 float *p = x;

 for(i=0; i<n; i++, printf("\n"))
 for(j=0; j<m; j++)
 printf(" %d", (int) *(p++));
}
Data Parallelism and Matrix Multiplication

1. Data Parallelism
 - matrix-matrix multiplication
 - CUDA program structure

2. Code for Matrix-Matrix Multiplication
 - linear address system for 2-dimensional array
 - defining the kernel
 - the main program

3. Two Dimensional Arrays of Threads
 - using threadIdx.x and threadIdx.y

4. Examining Performance
 - counting flops
assigning inner products to threads

Consider a 3-by-4 matrix A and a 4-by-5 matrix B:

\[
\begin{array}{cccc}
 a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
 a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\
 a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3}
\end{array} \quad \begin{array}{cccc}
 b_{0,0} & b_{0,1} & b_{0,2} & b_{0,3} & b_{0,4} \\
 b_{1,0} & b_{1,1} & b_{1,2} & b_{1,3} & b_{1,4} \\
 b_{2,0} & b_{2,1} & b_{2,2} & b_{2,3} & b_{2,4} \\
 b_{3,0} & b_{3,1} & b_{3,2} & b_{3,3} & b_{3,4}
\end{array}
\]

\[
\begin{array}{cccccccccc}
 c_{0,0} & c_{0,1} & c_{0,2} & c_{0,3} & c_{0,4} & c_{1,0} & c_{1,1} & c_{1,2} & c_{1,3} & c_{1,4} \\
 c_{2,0} & c_{2,1} & c_{2,2} & c_{2,3} & c_{2,4}
\end{array}
\]

The $i = blockIdx.x \times blockDim.x + threadIdx.x$ determines what entry in $C = A \cdot B$ will be computed:

- the row index in C is i divided by 5 and
- the column index in C is the remainder of i divided by 5.
the kernel function

`__global__ void matrixMultiply`

```c
(int n, int m, int p, float *A, float *B, float *C)
{
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    C[i] = 0.0;
    int rowC = i/p;
    int colC = i%p;
    float *pA = &A[rowC*m];
    float *pB = &B[colC];
    for(int k=0; k<m; k++)
    {
        pB = &B[colC+k*p];
        C[i] += (*pA++)*(*pB);
    }
}
```
Data Parallelism and Matrix Multiplication

1. Data Parallelism
 - matrix-matrix multiplication
 - CUDA program structure

2. Code for Matrix-Matrix Multiplication
 - linear address system for 2-dimensional array
 - defining the kernel
 - the main program

3. Two Dimensional Arrays of Threads
 - using threadIdx.x and threadIdx.y

4. Examining Performance
 - counting flops
running the program

```bash
$ /tmp/matmatmul 3 4 5 1
a random 3-by-4 0/1 matrix A :
  1 0 1 1
  1 1 1 1
  1 0 1 0
a random 4-by-5 0/1 matrix B :
  0 1 0 0 1
  0 1 1 0 0
  1 1 0 0 0
  1 1 0 1 0
the resulting 3-by-5 matrix C :
  2 3 0 1 1
  2 4 1 1 1
  1 2 0 0 1
$```

Introduction to Supercomputing (MCS 572)
Data Parallelism & Matrix Multiplication

L-31 2 November 2016 18 / 32
the main program — command line arguments

```c
int main (int argc, char*argv[])
{
 if(argc < 4)
 {
 printf("call with 3 arguments :\n");
 printf("dimensions n, m, and p\n");
 }
 else
 {
 int n = atoi(argv[1]); /* number of rows of A */
 int m = atoi(argv[2]); /* number of columns of A */
 int p = atoi(argv[3]); /* and number of rows of B */
 int mode = atoi(argv[4]); /* number of columns of B */
 int mode = atoi(argv[4]); /* 0 no output, 1 show output */
 if(mode == 0)
 srand(20140331)
 else
 srand(time(0));
 }
}
```

Introduction to Supercomputing (MCS 572)  Data Parallelism & Matrix Multiplication
allocating memories

```c
float *Ahost = (float*)calloc(n*m,sizeof(float));
float *Bhost = (float*)calloc(m*p,sizeof(float));
float *Chost = (float*)calloc(n*p,sizeof(float));
randomMatrix(n,m,Ahost,mode);
r
```
/* copy matrices A and B from host to the device */
cudaMemcpy(Adevice, Ahost, sA, cudaMemcpyHostToDevice);
cudaMemcpy(Bdevice, Bhost, sB, cudaMemcpyHostToDevice);

/* kernel invocation launching n*p threads */
matrixMultiply<<<n*p,1>>>(n, m, p,
    Adevice, Bdevice, Cdevice);

/* copy matrix C from device to the host */
cudaMemcpy(Chost, Cdevice, sC, cudaMemcpyDeviceToHost);
/* freeing memory on the device */
cudaFree(Adevice); cudaFree(Bdevice); cudaFree(Cdevice);
if (mode == 1)
{
    printf("the resulting %d-by-%d matrix C : \n", n, p);
    writeMatrix(n, p, Chost);
}
return 0;
Data Parallelism and Matrix Multiplication

1. Data Parallelism
   - matrix-matrix multiplication
   - CUDA program structure

2. Code for Matrix-Matrix Multiplication
   - linear address system for 2-dimensional array
   - defining the kernel
   - the main program

3. Two Dimensional Arrays of Threads
   - using threadIdx.x and threadIdx.y

4. Examining Performance
   - counting flops
using threadIdx.x and threadIdx.y

Instead of a one dimensional organization of the threads in a block we can make the \((i,j)\)-th thread compute \(c_{i,j}\).

The main program is then changed into

```c
/* kernel invocation launching n*p threads */
dim3 dimGrid(1,1);
dim3 dimBlock(n,p);
matrixMultiply<<<dimGrid,dimBlock>>>(
 (n,m,p,Adevice,Bdevice,Cdevice);
```

The above construction creates a grid of one block. The block has \(n \times p\) threads:

- \(\text{threadIdx.x}\) will range between 0 and \(n - 1\), and
- \(\text{threadIdx.y}\) will range between 0 and \(p - 1\).
the new kernel

__global__ void matrixMultiply
( int n, int m, int p, float *A, float *B, float *C )
/*
* Multiplies the n-by-m matrix A
* with the m-by-p matrix B into the matrix C.
* The (i,j)-th thread computes the (i,j)-th element of C.
*
{
  int i = threadIdx.x;
  int j = threadIdx.y;
  int ell = i*p + j;
  C[ell] = 0.0;
  float *pB;
  for(int k=0; k<m; k++)
  {
    pB = &B[j+k*p];
    C[ell] += A[i*m+k] * (*pB);
  }
}
Data Parallelism and Matrix Multiplication

1. Data Parallelism
   - matrix-matrix multiplication
   - CUDA program structure

2. Code for Matrix-Matrix Multiplication
   - linear address system for 2-dimensional array
   - defining the kernel
   - the main program

3. Two Dimensional Arrays of Threads
   - using threadIdx.x and threadIdx.y

4. Examining Performance
   - counting flops
Performance analysis

Performance is often expressed in terms of flops.

- 1 flops = one floating-point operation per second;
- use `perf`: Performance analysis tools for Linux
- run the executable, with `perf stat -e`
  with the events following the `-e` flag
  we count the floating-point operations.

For the Intel Sandy Bridge in `kepler` the codes are

- 530110 : FP_COMP_OPS_EXE:X87
- 531010 : FP_COMP_OPS_EXE:SSE_FP_PACKED_DOUBLE
- 532010 : FP_COMP_OPS_EXE:SSE_FP_SCALAR_SINGLE
- 534010 : FP_COMP_OPS_EXE:SSE_PACKED_SINGLE
- 538010 : FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE

Executables are compiled with the option `-O2`. 
performance of one CPU core

$ perf stat -e r530110 -e r531010 -e r532010 -e r534010 -e r538010 ./matmatmul0 745 745 745 0$

Performance counter stats for './matmatmul0 745 745 745 0':

1,668,710 r530110
0 r531010
2,478,340,803 r532010
0 r534010
0 r538010

1.033291591 seconds time elapsed

$ Did 2,480,009,513 operations in 1.033 seconds:

⇒ (2,480,009,513/1.033)/(2^{30}) = 2.23GFlops.
performance on the K20C

```
$ perf stat -e r530110 -e r531010 -e r532010 -e r534010 \n -e r538010 ./matmatmul1 745 745 745 0

Performance counter stats for './matmatmul1 745 745 745 0':

 160,925 r530110
 0 r531010
 2,306,222 r532010
 0 r534010
 0 r538010

 0.663709965 seconds time elapsed
```

```
$ time ./matmatmul1 745 745 745 0

real 0m0.631s
user 0m0.023s
sys 0m0.462s
```

The dimension 745 is too small for the GPU to be able to improve much.
increasing the dimension

$ perf stat -e r530110 -e r531010 -e r532010 -e r534010 \ 
  -e r538010 ./matmatmul0 4000 4000 4000 0

Performance counter stats for './matmatmul0 4000 4000 4000 0':

        48,035,278 r530110
            0 r531010
   267,810,771,301 r532010
            0 r534010
            0 r538010

171.33443720 seconds time elapsed

$ See if we can speedup the computations with the GPU...
running on the K20C

$ perf stat -e r530110 -e r531010 -e r532010 -e r534010
   -e r538010 ./matmatmul 4000 4000 4000 0

Performance counter stats for './matmatmul 4000 4000 4000 0':

<table>
<thead>
<tr>
<th>Counter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>r530110</td>
<td>207,682</td>
</tr>
<tr>
<td>r531010</td>
<td>0</td>
</tr>
<tr>
<td>r532010</td>
<td>64,222,441</td>
</tr>
<tr>
<td>r534010</td>
<td>0</td>
</tr>
<tr>
<td>r538010</td>
<td>0</td>
</tr>
</tbody>
</table>

1.011284551 seconds time elapsed

$

Speedup: 171.334/1.011 = 169.

Counting flops, $f = 267,810,771,301$

- $t_{cpu} = 171.334: f/t_{cpu}/(2^{30}) = 1.5$ GFlops.
- $t_{gpu} = 1.011: f/t_{gpu}/(2^{30}) = 246.7$ GFlops.
running on pascal, on the P100

On a larger GPU, we need to scale the problem:

\[
\begin{array}{|c|c|c|}
\hline
n = 2^k & n & \text{time} \\
\hline
2^{12} & 4096 & 1.33s \\
2^{13} & 8192 & 2.32s \\
2^{14} & 16384 & 6.24s \\
2^{15} & 32768 & 22.76s \\
\hline
\end{array}
\]

Matrix-Matrix multiplication is an \( O(n^3) \) operation: doubling the dimension, we expect the time increase eightfold.

A very rough estimate on the flops count (single precision floats):
- For \( n = 4,000 \), the flop count is \( f = 267,810,771,301 \).
- To scale to \( n = 2^{15} \): \( n \times 8 \), so \( F = 512 \times f \).
- In 22.76 seconds, so flops is \( (F/22.76)/(2^{30}) = 5610.8 \).

So we estimate the performance at 5.6 TeraFlops for \( n = 32,000 \).
We covered more of chapter 3 in the book of Kirk & Hwu.

1. Modify `matmatmul0.c` and `matmatmul1.cu` to work with doubles instead of floats. Examine the performance.
2. Modify `matmatmul2.cu` to use double indexing of matrices, e.g.: \( C[i][j] += A[i][k] \times B[k][j] \).
3. Compare the performance of `matmatmul1.cu` and `matmatmul2.cu`, taking larger and larger values for \( n, m, \) and \( p \). Which version scales best?