Parallel Gaussian Elimination

1. LU and Cholesky Factorization
 - factoring a square matrix
 - tiled Cholesky factorization

2. Blocked LU Factorization
 - deriving blocked formulations of LU
 - right and left looking LU factorizations
 - tiled algorithm for LU factorization

3. The PLASMA Software Library
 - Parallel Linear Algebra Software for Multicore Architectures
 - running an example

MCS 572 Lecture 21
Introduction to Supercomputing
Jan Verschelde, 10 October 2016
Parallel Gaussian Elimination

1. LU and Cholesky Factorization
 - factoring a square matrix
 - tiled Cholesky factorization

2. Blocked LU Factorization
 - deriving blocked formulations of LU
 - right and left looking LU factorizations
 - tiled algorithm for LU factorization

3. The PLASMA Software Library
 - Parallel Linear Algebra Software for Multicore Architectures
 - running an example
solving $Ax = b$ with the LU factorization

To solve an n-dimensional linear system $Ax = b$ we factor A as a product of two triangular matrices, $A = LU$:

- L is lower triangular, $L = [\ell_{i,j}]$, $\ell_{i,j} = 0$ if $j > i$ and $\ell_{i,i} = 1$.
- U is upper triangular $U = [u_{i,j}]$, $u_{i,j} = 0$ if $i > j$.

Solving $Ax = b$ is equivalent to solving $L(Ux) = b$:

1. Forward substitution: $Ly = b$.
2. Backward substitution: $Ux = y$.

Factoring A costs $O(n^3)$, solving triangular systems costs $O(n^2)$.

For numerical stability, we apply partial pivoting and compute $PA = LU$, where P is a permutation matrix.
LU factorization of the matrix A

for column $j = 1, 2, \ldots, n - 1$ in A do

1. find the largest element $a_{i,j}$ in column j (for $i \geq j$);
2. if $i \neq j$, then swap rows i and j;
3. for $i = j + 1, \ldots n$, for $k = j + 1, \ldots, n$ do $a_{i,k} := a_{i,k} - \left(\frac{a_{i,j}}{a_{j,j}} \right) a_{j,k}$.
Cholesky factorization

If \(A \) is symmetric, \(A^T = A \), and positive semidefinite: \(\forall x : x^T A x \geq 0 \), then we better compute a Cholesky factorization: \(A = LL^T \), where \(L \) is a lower triangular matrix.

Because \(A \) is positive semidefinite, no pivoting is needed, and we need about half as many operations as LU.

\[
\begin{align*}
\text{for } j = 1, 2, \ldots, n \text{ do} \\
\quad \text{for } k = 1, 2, \ldots, j - 1 \text{ do} \\
\quad & a_{j,j} := a_{j,j} - a_{j,k}^2; \\
\quad & a_{j,j} := \sqrt{a_{j,j}}; \\
\quad \text{for } i = j + 1, \ldots, n \text{ do} \\
\quad & \text{for } k = 1, 2, \ldots, j \text{ do} \\
\quad & a_{i,j} := a_{i,j} - a_{i,k}a_{j,k} \\
\quad & a_{i,j} := a_{i,j} / a_{j,j}
\end{align*}
\]
Parallel Gaussian Elimination

1. LU and Cholesky Factorization
 - factoring a square matrix
 - tiled Cholesky factorization

2. Blocked LU Factorization
 - deriving blocked formulations of LU
 - right and left looking LU factorizations
 - tiled algorithm for LU factorization

3. The PLASMA Software Library
 - Parallel Linear Algebra Software for Multicore Architectures
 - running an example
tiled matrices

Let A be a symmetric, positive definite n-by-n matrix.

For tile size b, let $n = p \times b$ and consider

$$A = \begin{bmatrix}
A_{1,1} & A_{2,1} & \cdots & A_{p,1} \\
A_{2,1} & A_{2,2} & \cdots & A_{p,2} \\
\vdots & \vdots & \ddots & \vdots \\
A_{p,1} & A_{p,2} & \cdots & A_{p,p}
\end{bmatrix},$$

where $A_{i,j}$ is an b-by-b matrix.

A crude classification of memory hierarchies distinguishes between registers (small), cache (medium), and main memory (large).

To reduce data movements, we want to keep data in registers and cache as much as possible.
tiled Cholesky factorization

for $k = 1, 2, \ldots, p$ do
 \texttt{DPOTF2}(A_{k,k}, L_{k,k});
 for $i = k + 1, \ldots, p$ do
 \texttt{DTRSM}(L_{k,k}, A_{i,k}, L_{i,k});
 end for;
 for $i = k + 1, \ldots, p$ do
 for $j = k + 1, \ldots, p$ do
 \texttt{DGEMM}(L_{i,k}, L_{j,k}, A_{i,j});
 end for;
 end for;
end for.

\[L_{k,k} := \text{Cholesky}(A_{k,k}) \]
\[L_{i,k} := A_{i,k}L_{k,k}^{-T} \]
\[A_{i,j} := A_{i,j} - L_{i,k}L_{j,k}^{T} \]
Parallel Gaussian Elimination

1. LU and Cholesky Factorization
 - factoring a square matrix
 - tiled Cholesky factorization

2. Blocked LU Factorization
 - deriving blocked formulations of LU
 - right and left looking LU factorizations
 - tiled algorithm for LU factorization

3. The PLASMA Software Library
 - Parallel Linear Algebra Software for Multicore Architectures
 - running an example
blocked LU factorization

The optimal size of the blocks is machine dependent.

\[
\begin{bmatrix}
A_{1,1} & A_{1,2} & A_{1,3} \\
A_{2,1} & A_{2,2} & A_{2,3} \\
A_{3,1} & A_{3,2} & A_{3,3}
\end{bmatrix} =
\begin{bmatrix}
L_{1,1} & L_{2,1} & L_{3,1} \\
L_{2,1} & L_{2,2} & L_{3,2} \\
L_{3,1} & L_{3,2} & L_{3,3}
\end{bmatrix}
\begin{bmatrix}
U_{1,1} & U_{1,2} & U_{1,3} \\
U_{2,2} & U_{2,3} & \ \\
U_{3,3} & &
\end{bmatrix}
\]

Expanding the right hand side and equating to the matrix at the left gives formulations for the LU factorization.

\[
A_{1,1} = L_{1,1}U_{1,1} \quad A_{1,2} = L_{1,1}U_{1,2} \quad A_{1,3} = L_{1,1}U_{1,3} \\
A_{2,1} = L_{2,1}U_{1,1} \quad A_{2,2} = L_{2,1}U_{1,2} + L_{2,2}U_{2,2} \quad A_{2,3} = L_{2,1}U_{1,3} + L_{2,2}U_{2,3} \\
A_{3,1} = L_{3,1}U_{1,1} \quad A_{3,2} = L_{3,1}U_{1,2} + L_{3,2}U_{2,2} \quad A_{3,3} = L_{3,1}U_{1,3} + L_{3,2}U_{2,3} + L_{3,3}U_{3,3}
\]
right looking LU

We store the $L_{i,j}$'s and $U_{i,j}$'s in the original matrix:

\[
\begin{bmatrix}
A_{1,1} & A_{1,2} & A_{1,3} \\
A_{2,1} & A_{2,2} & A_{2,3} \\
A_{3,1} & A_{3,2} & A_{3,3}
\end{bmatrix}
= \begin{bmatrix}
L_{1,1} \\
L_{2,1} & I \\
L_{3,1} & I
\end{bmatrix}
\begin{bmatrix}
U_{1,1} & U_{1,2} & U_{1,3} \\
B_{2,2} & I \\
B_{3,2} & I
\end{bmatrix}
\]

The matrices $B_{i,j}$'s are obtained after a first block LU step. To find $L_{2,2}$, $L_{3,2}$, and $U_{2,2}$ we use

\[
\begin{align*}
A_{2,2} &= L_{2,1}U_{1,2} + L_{2,2}U_{2,2} \\
A_{3,2} &= L_{3,1}U_{1,2} + L_{3,2}U_{2,2}
\end{align*}
\quad \text{and} \quad
\begin{align*}
A_{2,2} &= L_{2,1}U_{1,2} + B_{2,2} \\
A_{3,2} &= L_{3,1}U_{1,2} + B_{3,2}
\end{align*}
\]

Eliminating $A_{2,2} - L_{2,1}U_{1,2}$ and $A_{3,2} - L_{3,1}U_{1,2}$ gives

\[
\begin{align*}
B_{2,2} &= L_{2,2}U_{2,2} \\
B_{3,2} &= L_{3,2}U_{2,2}
\end{align*}
\]

Via LU on $B_{2,2}$ we obtain $L_{2,2}$ and $U_{2,2}$. Then: $L_{3,2} := B_{3,2}U_{2,2}^{-1}$.
Parallel Gaussian Elimination

1. LU and Cholesky Factorization
 - factoring a square matrix
 - tiled Cholesky factorization

2. Blocked LU Factorization
 - deriving blocked formulations of LU
 - right and left looking LU factorizations
 - tiled algorithm for LU factorization

3. The PLASMA Software Library
 - Parallel Linear Algebra Software for Multicore Architectures
 - running an example
right and left looking

The formulas we derived are similar to the scalar case and are called *right looking*.

But we may organize the LU factorization differently:

What is good looking? Left is best for data access.
left looking formulas

Going from P_1A to P_2P_1A:

\[
\begin{bmatrix}
L_{1,1} & U_{1,1} & A_{1,2} & A_{1,3} \\
L_{2,1} & A_{2,2} & A_{2,3} \\
L_{3,1} & A_{3,2} & A_{3,3}
\end{bmatrix} \rightarrow \begin{bmatrix}
L_{1,1} & L_{2,1} & L_{2,2} \\
L_{2,1} & L_{2,2} \\
L_{3,1} & L_{3,2} & I
\end{bmatrix} \begin{bmatrix}
U_{1,1} & U_{1,2} & A_{1,3} \\
U_{2,2} & A_{2,3} \\
A_{3,3}
\end{bmatrix}
\]

We keep the original $A_{i,j}$’s and postpone updating to the right.

1. We get $U_{1,2}$ via $A_{1,2} = L_{1,1}U_{1,2}$ and compute $U_{1,2} = L_{1,1}^{-1}A_{1,2}$.

2. To compute $L_{2,2}$ and $L_{3,2}$ do

\[
\begin{bmatrix}
B_{2,2} \\
B_{3,2}
\end{bmatrix} = \begin{bmatrix}
A_{2,2} \\
A_{3,2}
\end{bmatrix} - \begin{bmatrix}
L_{2,1} \\
L_{3,1}
\end{bmatrix} U_{1,2}.
\]

and factor $P_2 \begin{bmatrix}
B_{2,2} \\
B_{3,2}
\end{bmatrix} = \begin{bmatrix}
L_{2,2} \\
L_{3,2}
\end{bmatrix} U_{2,2}$ as before.

Replace $\begin{bmatrix}
A_{2,3} \\
A_{3,3}
\end{bmatrix} := P_2 \begin{bmatrix}
A_{2,3} \\
A_{3,3}
\end{bmatrix}$ and $\begin{bmatrix}
L_{2,1} \\
L_{3,1}
\end{bmatrix} := P_2 \begin{bmatrix}
L_{2,1} \\
L_{3,1}
\end{bmatrix}$.
Parallel Gaussian Elimination

1. LU and Cholesky Factorization
 - factoring a square matrix
 - tiled Cholesky factorization

2. Blocked LU Factorization
 - deriving blocked formulations of LU
 - right and left looking LU factorizations
 - tiled algorithm for LU factorization

3. The PLASMA Software Library
 - Parallel Linear Algebra Software for Multicore Architectures
 - running an example
tiled LU factorization

for \(k = 1, 2, \ldots, p \) do
\[\text{DGETF}(A_{k,k}, L_{k,k}, U_{k,k}, P_{k,k}); \]
for \(j = k + 1, \ldots, p \) do
\[\text{DGESSM}(A_{k,j}, L_{k,k}, P_{k,k}, U_{k,j}); \]
end for;
for \(i = k + 1, \ldots, p \) do
\[\text{DTSTRF}(U_{k,k}, A_{i,k}, P_{i,k}); \]
for \(j = k + 1, \ldots, p \) do
\[\text{DSSSM}(U_{k,j}, A_{i,j}, L_{i,k}, P_{i,k}); \]
end for;
end for.

\[L_{k,k}, U_{k,k}, P_{k,k} := \text{LU}(A_{k,k}) \]
\[U_{k,j} := L_{k,k}^{-1} P_{k,k} A_{k,j} \]
\[U_{k,k}, L_{i,k}, P_{i,k} := \text{LU} \left(\begin{bmatrix} U_{k,k} \\ A_{i,k} \end{bmatrix} \right) \]
\[\begin{bmatrix} U_{k,j} \\ A_{i,j} \end{bmatrix} := L_{i,k}^{-1} P_{i,k} \begin{bmatrix} U_{k,j} \\ A_{i,j} \end{bmatrix} \]
Parallel Gaussian Elimination

1. LU and Cholesky Factorization
 - factoring a square matrix
 - tiled Cholesky factorization

2. Blocked LU Factorization
 - deriving blocked formulations of LU
 - right and left looking LU factorizations
 - tiled algorithm for LU factorization

3. The PLASMA Software Library
 - Parallel Linear Algebra Software for Multicore Architectures
 - running an example
the PLASMA software library

Parallel Linear Algebra Software for Multicore Architectures.

- Software using FORTRAN and C.
- Design for efficiency on homogeneous multicore processors and multi-socket systems of multicore processors.
- Built using a small set of sequential routines as building blocks, referred to as *core BLAS*.

Capabilities and limitations:

- Can solve dense linear systems and least squares problems.
- Unlike LAPACK, PLASMA currently does not solve eigenvalue or singular value problems and provide no support for band matrices.
Basic Linear Algebra Subprograms: BLAS

1. Level-1 BLAS: vector-vector operations, $O(n)$ cost.
 inner products, norms, $\mathbf{x} \pm \mathbf{y}$, $\alpha \mathbf{x} + \mathbf{y}$.

2. Level-2 BLAS: matrix-vector operations, $O(mn)$ cost.
 - $\mathbf{y} = \alpha \mathbf{A} \mathbf{x} + \beta \mathbf{y}$
 - $\mathbf{A} = \mathbf{A} + \alpha \mathbf{x} \mathbf{y}^T$, rank one update
 - $\mathbf{x} = T^{-1} \mathbf{b}$, for T a triangular matrix

3. Level-3 BLAS: matrix-matrix operations, $O(kmn)$ cost.
 - $\mathbf{C} = \alpha \mathbf{A} \mathbf{B} + \beta \mathbf{C}$
 - $\mathbf{C} = \alpha \mathbf{A} \mathbf{A}^T + \beta \mathbf{C}$, rank k update of symmetric matrix
 - $\mathbf{B} = \alpha \mathbf{T} \mathbf{B}$, for \mathbf{T} a triangular matrix
 - $\mathbf{B} = \alpha \mathbf{T}^{-1} \mathbf{B}$, solve linear system with many right hand sides
graph driven asynchronous execution

We view a blocked algorithm as a Directed Acyclic Graph (DAG):
- nodes are computational tasks performed in kernel subroutines;
- edges represent the dependencies among the tasks.

Given a DAG, tasks are scheduled asynchronously and independently, considering the dependencies imposed by the edges in the DAG.

A critical path in the DAG connects those nodes that have the highest number of outgoing edges.

The scheduling policy assigns higher priority to those tasks that lie on the critical path.

Basic installation:
- `download plasma-installer_2.8.0.tar.gz`
- `./setup.py --cc=gcc --fc=gfortran --downblas --downlapack`
Parallel Gaussian Elimination

1. LU and Cholesky Factorization
 - factoring a square matrix
 - tiled Cholesky factorization

2. Blocked LU Factorization
 - deriving blocked formulations of LU
 - right and left looking LU factorizations
 - tiled algorithm for LU factorization

3. The PLASMA Software Library
 - Parallel Linear Algebra Software for Multicore Architectures
 - running an example
The directory examples in
/home/jan/Downloads/plasma-installer_2.8.0/build/plasma_2.8.0
contains example_cposv, an example for a Cholesky factorization of a symmetric
positive definite matrix.
Running make as defined in the examples directory:

$ make example_cposv
gcc -O2 -DADD_ -I../include -I../quark
-I/home/jan/Downloads/plasma-installer_2.8.0/install/include
-c example_cposv.c -o example_cposv.o
gfortran example_cposv.o -o example_cposv -L../lib
-lplasma -lcoreblasqw -lcoreblas -L../quark -lquark
-L/home/jan/Downloads/plasma-installer_2.8.0/install/lib
-lcblas
-L/home/jan/Downloads/plasma-installer_2.8.0/install/lib
-llapacke
-L/home/jan/Downloads/plasma-installer_2.8.0/install/lib
-ltmg -llapack
-L/home/jan/Downloads/plasma-installer_2.8.0/install/lib
-lrefblas -lpthread -lm
$
The entry for `example_cposv` in a makefile:

```bash
PLASMA=/home/jan/Downloads/plasma-installer_2.8.0
PLASMALIB=\n/home/jan/Downloads/plasma-installer_2.8.0/build/plasma_2.8.0/lib

example_cposv:
gcc -O2 -DADD_ -I$(PLASMA)/build/include \n  -I$(PLASMA)/build/plasma_2.8.0/quark \n  -I$(PLASMA)/install/include \n  -c example_cposv.c -o example_cposv.o
gfortran  example_cposv.o -o example_cposv \n  -L$(PLASMALIB) -lplasma -lcoreblasq -lcoreblas \n  -L$(PLASMA)/build/plasma_2.8.0/quark -lquark \n  -L$(PLASMA)/install/lib -lcblas \n  -L$(PLASMA)/install/lib -llapacke \n  -L$(PLASMA)/install/lib -ltmg -llapack \n  -L$(PLASMA)/install/lib -lrefblas -lpthread -lm
```
running `example_cposv`

Adjusted dimensions:

```c
int cores = 2;
int N    = 10000;
int LDA  = 10000;
int NRHS = 5;
int LDB  = 10000;
```

Cholesky factorization with the dimension equal to 10,000.

```bash
$ time ./example_cposv
-- PLASMA is initialized to run on 2 cores.
===============
Checking the Residual of the solution
-- \|Ax-B\|_\infty/((\|A\|_\infty\|x\|_\infty+\|B\|_\infty).N.\text{eps}) = 2.846077\times 10^{-3}
-- The solution is CORRECT!
-- Run of CPOSV example successful!

real 2m48.451s
user 5m29.606s
sys 0m2.830s
$
```
checking the speedups

The wall clock times for Cholesky on dimension 10,000:

<table>
<thead>
<tr>
<th>#cores</th>
<th>real time</th>
<th>speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2m 40.913s</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1m 22.271s</td>
<td>1.96</td>
</tr>
<tr>
<td>4</td>
<td>42.621s</td>
<td>3.78</td>
</tr>
<tr>
<td>8</td>
<td>23.480s</td>
<td>6.85</td>
</tr>
<tr>
<td>16</td>
<td>12.647s</td>
<td>12.72</td>
</tr>
</tbody>
</table>
suggested reading

Summary + Exercises

In Wilkinson and Allen, parallel linear system solving is in §11.3.2.

Exercises:

1. Write your own parallel shared memory version of the Cholesky factorization, using OpenMP, Pthreads, or the Intel TBB.

2. Derive right looking LU factorization formulas with pivoting, i.e.: introducing permutation matrices P. Develop first the formulas for a 3-by-3 block matrix and then generalize the formulas into an algorithm for any p-by-p block matrix.

3. Take an appropriate example from the PLASMA installation to test the speedup of the multicore LU factorization routines.