Required Part:

0. Read §8b Wishart Distribution and §4a Theory of Least Squares (Linear Estimation).

For Problems 1, 2, and 4, we consider a linear model \(Y = X\beta + \varepsilon \), where \(Y \) is an \(n \times 1 \) random vector, \(X \) is a known \(n \times m \) matrix, \(\beta \) is an \(m \times 1 \) vector of unknown parameters, and \(\varepsilon \) is an \(n \times 1 \) random vector of noise with \(E(\varepsilon) = 0 \) and \(V(\varepsilon) = \sigma^2 I_n \). All \(L, C, D, P, L_0 \) are column vectors.

1. Recall that a linear function \(P'\beta \) of \(\beta \) is called **estimable** if there exists a linear function \(L'Y \) such that \(E(L'Y) = P'\beta \).

 (a) Based on the definition of estimable linear function, show that all estimable linear functions of \(\beta \) form a linear space, that is,
 * if \(C'\beta \) and \(D'\beta \) are estimable, then \((C + D)'\beta \) is estimable too;
 * if \(C'\beta \) is estimable and \(a \) is a scalar, then \((aC)'\beta \) is estimable.

 (b) Determine the linear space formed by all estimable linear functions of \(\beta \).

2. Consider equation \(P = X'L \) where both \(P \) and \(L \) are \(n \times 1 \) vectors.

 (a) Show that if \(P = X'L \) admits a solution for \(L \), then \(L'Y \) is unbiased for \(P'\beta \).

 (b) Suppose \(P = X'L \) admits a solution for \(L \). Show that there exists a unique solution \(L = L_0 \in \mathcal{M}(X) \).

 (c) Show that \(V(L_0'Y) \leq V(L'Y) \) for any other solution \(L \).

3. Consider the linear model \(y_{ij} = \beta_0 + \beta_i + \varepsilon_{ij}, \quad i = 1, 2, 3, \quad j = 1, 2 \) with the standard assumptions on \(\varepsilon \), that is, \(\varepsilon_{ij} \) iid \(\sim N(0, \sigma^2) \).

 (a) Show that \(c_1\beta_1 + c_2\beta_2 + c_3\beta_3 \) is estimable if and only if \(c_1 + c_2 + c_3 = 0 \).

 (b) Suppose the observations are \(y_{11} = 0.1, \quad y_{12} = -0.5, \quad y_{21} = 3.2, \quad y_{22} = 6.3, \quad y_{31} = 4.9, \) and \(y_{32} = 5.9 \). Find the normal equations.

 (c) For the data in (b), find BLUEs for \(\beta_1 - \beta_2, \beta_1 - \beta_3, \) and \(\beta_2 - \beta_3 \).

Optional Part:

4. Show that in general a linear function \(L'Y \) has minimum variance as an linear unbiased estimate of \(E(L'Y) \) if and only if \(cov(L'Y, D'Y) = 0 \) for all \(D \) such that \(E(D'Y) = 0 \).