Solutions to Homework #2:

4) Find an infinite counterexample to the statement of the marriage theorem
Solution: Let \(X = Z^+ \cup \{a\} \) and \(Y = Z^+ \) and join \(x \in X \) to \(y \in Y \) iff \(x = y \) or \(x = a \). Then Halls conditions clearly holds. On the other hand, a matching saturating \(X \) must saturate \(Z^+ \subset X \), and since these vertices have degree 1, it cannot saturate \(a \). Hence there is no matching saturating \(X \).

5) Let \(k \) be an integer. Show that any two partitions of a finite set into \(k \)-sets admit a common choice of representatives.
Solution: Let \(A_1, \ldots, A_m \) and \(B_1, \ldots, B_m \) be the two partitions. Form a bipartite graph with parts \(\{A_i\} \) and \(\{B_i\} \), and join \(A_i \) to \(B_j \) if they have an element in common. For any given collection of \(t \) \(A_i \)'s, the number of elements in their union is \(tk \), so the number of \(B_j \)'s covering these \(tk \) elements is at least \(t \). Hence the number of neighbors of these \(t \) \(A_i \)'s in the bipartite graph is at least \(t \), so Halls condition holds. By Halls theorem, we have a perfect matching. Each edge of this matching corresponds to an element of the ground set, and no two of these elements are the same since the \(A_i \)'s form a partition. Hence this matching gives a CSDR.

6) Let \(A \) be a finite set with subsets \(A_1, \ldots, A_n \) and let \(d_1, \ldots, d_n \in N \). Show that there are disjoint subsets \(D_k \subset A_k \) with \(|D_k| = d_k \) for all \(k \leq n \), if and only if \(|\cup_{i \in I} A_i| \geq \sum_{i \in I} d_i \) for all \(I \subset [n] \).
Solution: The condition is clearly necessary. Form a bipartite graph \(B \) with parts \(X, A \), where \(X = a_i^j \), for \(i \in [n] \) and \(j \in [d_i] \). Join \(a_i^j \in X \) to \(s \in A \) if \(s \in A_i \). Then the given condition implies Halls condition in \(B \), so \(B \) has a matching saturating all of \(X \). The construction of \(B \) implies that we obtains the sets required in the problem.

13) Show that a graph \(G \) contains \(k \) independent edges if and only if \(q(G - S) \leq |S| + |V(G)| - 2k \) for all sets \(S \subset V(G) \).
Solution: Let \(n = |V(G)| \) and form the graph \(G \) by adding \(n - 2k \) new vertices each adjacent to all vertices of \(G \). Then the condition of the problem corresponds to Tutte’s condition on \(G' \), so by Tutte’s theorem, \(G' \) has a perfect matching \(M \). The number vertices of \(V(G) \) that are matched to some other vertex of \(V(G) \) is at least \(n - (n - 2k) = 2k \), so we have at least \(k \) edges of \(M \) that lie entirely in \(G \).

17) Does there exist a function \(g(k) \) so that every multigraph with minimum degree at least \(3 \) and at least \(g(k) \) vertices contains \(k \) disjoint cycles?
Solution: No, let \(W_n \) be the graph obtained from \(C_n \) by adding a new vertex adjacent to all vertices of \(C_n \) - this is sometimes called the wheel. Then \(W_n \) has \(n + 1 \) vertices, minimum degree \(3 \) and no two disjoint cycles.

18) Prove that the vertices of a graph \(G \) can be covered by at most \(\alpha(G) \) disjoint subgraphs each isomorphic to a cycle, \(K_2 \), or \(K_1 \).
Solution: We can proceed by induction on \(\alpha(G) \). The claim clearly holds for \(\alpha(G) = 1 \). Take a longest path \(P \) in \(G \) with endpoints \(u, v \). If \(P \) has no edges, then the result holds trivially, so assume there is at least one edge in \(P \). All edges incident with \(u \) are on \(P \). Hence either \(d_G(u) = 1 \) or there is a cycle \(C \) such that \(u \in V(C) \subset V(P) \) and \(u \) has no
edges to $G - C$ (by picking the furthest neighbor of u on P). Let $C' = C$ or the edge incident to u if $d_G(u) = 1$. Any independent set of $G - C'$ can be augmented by adding u to obtain an independent set in G, hence $\alpha(G - C') < \alpha(G)$. By induction, we can cover $G - C'$ and then cover G by adding C'.

21) Derive Hall’s theorem from the Gallai-Milgram theorem.

Solution Suppose we are given the bipartite graph $B = X, Y$ with $|N(S)| \geq |S|$ for all $S \subset X$. Form a directed graph D by directing all edges of B from X to Y. Pick an independent set $I \subset V(D)$. Then $N_B(I \cap X) \subset Y - I$ so by Halls condition, $|Y - I| \geq |I \cap X|$. Then

$$|I| = |I \cap X| + |I \cap Y| \leq |Y - I| + |I \cap Y| = |Y|.$$

So by Gallai-Milgram, D can be covered by at most $|Y|$ directed paths. Each of these paths must have an endpoint in Y, so X is covered by paths of length at least 1. These paths provide a matching saturating all of X.