• Show your work on all questions. Incorrect answers with sufficient work may get partial credit, and correct answers with insufficient work may not get full credit.

• Calculators are not allowed (they won’t help anyway).

• You are responsible for upholding UIC’s standard for academic integrity. This includes protecting your work from the eyes of other students.

• Turn off your cell phone before the exam begins.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points Possible</th>
<th>Points Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20/20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20/20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20/20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20/20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20/15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0/5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

How was this exam?
(a) Very hard
(b) Hard
(c) OK
(d) Easy
(e) Very easy
Problem 1. (20/20 points) Let $X_1, \ldots, X_n \overset{\text{iid}}{\sim} N(0, \theta)$, where $\theta > 0$ is the variance. Consider testing $H_0 : \theta = \theta_0$ versus $H_1 : \theta > \theta_0$.

1. (6/6 points) Show/argue that $N(0, \theta)$ has the monotone likelihood ratio (MLR) property in a statistic T, and identify T.

2. (7/7 points) Using the MLR property above, argue that the uniformly most powerful test is of the form: Reject H_0 iff $T \geq k$.

3. (7/7 points) Find k above such that the test has size α.
Problem 2. (20/20 points) Let \(X_1, \ldots, X_n \overset{\text{iid}}{\sim} f_\theta(x) \), with \(f_\theta(x) = e^{-(x-\theta)}I_{[\theta, \infty)}(x) \), and consider testing \(H_0 : \theta = \theta_0 \) versus \(H_1 : \theta \neq \theta_0 \).

1. (10/10 points) The likelihood ratio test rejects \(H_0 \) iff \(L(\theta_0)/L(X_{(1)}) \leq k \). Show that this is equivalent to a test: Reject \(H_0 \) iff \(X_{(1)} - \theta_0 < 0 \) or \(X_{(1)} - \theta_0 \geq k' \).

2. (10/10 points) Find \(k' \) so that the test has size \(\alpha \). (Hint: Set \(Y_i = X_i - \theta_0 \) for \(i = 1, \ldots, n \); then \(Y_{(1)} = X_{(1)} - \theta_0 \) and \(Y_1, \ldots, Y_n \) are iid \(\text{Exp}(1) \) when \(\theta = \theta_0 \).)
Problem 3. (20/20 points) Suppose that X_1, \ldots, X_n are independent (but not iid) with $X_i \sim N(\theta t_i, 1)$, $i = 1, \ldots, n$, where t_1, \ldots, t_n are known constants.

1. (10/10 points) Find the maximum likelihood estimator $\hat{\theta}$ of θ. (Hint: Independence means the likelihood function is still the product of the individual PDFs.)

2. (10/5 points) Find the mean and variance of $\hat{\theta}$. Is $\hat{\theta}$ unbiased?

3. (0/5 points) Suppose the t_i's satisfy $\sum_{i=1}^{\infty} t_i^2 = \infty$. Show that $\hat{\theta}$ is consistent. (Hint: Use Chebyshev’s inequality to show that $\lim_{n \to \infty} P_\theta(\left| \hat{\theta} - \theta \right| > \varepsilon) = 0$ for any $\varepsilon > 0$.)
Problem 4. (20/20 points) In a Bayesian setup, suppose that the prior distribution is $\Theta \sim \text{Gamma}(a, b)$ and, given $\Theta = \theta$, the model is $X \sim \text{Pois}(\theta)$. In this case, write the $\text{Gamma}(a, b)$ PDF as $\pi(\theta) \propto \theta^{a-1}e^{-b\theta}$, so that the prior mean is $E(\Theta) = a/b$.

1. (5/5 points) Show that the posterior distribution for Θ, given $X = x$, is $\text{Gamma}(a', b')$, where $a' = a + x$ and $b' = b + 1$.

2. (5/5 points) Suppose $a = b = 1$. What’s the posterior mean $E(\Theta | x)$?

3. (5/5 points) Consider the MVUE $\hat{\theta}_1 = X$ and the posterior mean $\hat{\theta}_2 = E(\Theta | X)$ above. Find the respective mean-square errors, $\text{MSE}_1(\theta)$ and $\text{MSE}_2(\theta)$.

4. (5/5 points) Which of $\text{MSE}_1(1)$ and $\text{MSE}_2(1)$ is larger? Use the particular choice of prior distribution for θ to make a case for why having small mean-square error for θ near 1 might be important.
Problem 5. (20/15 points) Undergraduate students must answer any two of the four questions; graduate students must answer any three.

1. There is a theorem that says a Bayes posterior mean \(\hat{\theta} = E(\Theta \mid X) \) cannot be an unbiased estimator of \(\theta \). Does this mean that Bayes estimators are bad? Explain your answer. (Hint: Consider the bias–variance tradeoff.)

2. Use the Neyman–Fisher factorization theorem to argue that the Bayesian posterior distribution for \(\Theta \) depends on data only through a sufficient statistic.

3. For testing \(H_0 : \theta = \theta_0 \) versus \(H_1 : \theta > \theta_0 \), suppose the p-value is given by \(\text{pval}(t) = P_{\theta_0}(T \geq t) \), where \(t \) is the observed value of the test statistic \(T \). Explain why a small p-value is indication that \(H_0 \) may be false.

4. Explain how Wilk’s theorem is used in the context of hypothesis testing and why it’s important.
Problem 6. (0/5 points) Graduate students must answer one of the two questions. Refer back to the situation in Problem 1.

1. Let $\text{pow}(\theta)$ denote the power function for the size-0.05 test in Problem 1(c). Show that, for any $\theta > \theta_0$, $\text{pow}(\theta) \to 1$ as $n \to \infty$. (Hint: Central Limit Theorem.)

2. Let $T = \left(\frac{1}{\theta_0}\right) \sum_{i=1}^{n} X_i^2$ and write t for the value of T for the observed sample. Then the p-value for the test is $p\text{val}(t) = P_{\theta_0}(T \geq t)$. The null distribution of T is known, but pretend that we don’t know it. Explain how you could numerically evaluate the p-value using Monte Carlo.