1. Basic model is $X | \theta \sim \text{Exp}(\theta)$ and the prior is $\text{Gamma}(a,b)$; both the exponential and gamma are taken to have a rate parametrization.

(a) When X is censored, and we only observe $\{X < 100\}$ ($Z = 0$) or $\{X \geq 100\}$ ($Z = 1$), the sample is Z is Bernoulli with parameter $e^{-100\theta}$. Since we observe $Z = 1$, the likelihood function is $e^{-100\theta}$ which, when combined with the prior, gives a gamma posterior, i.e., $\theta | (Z = 1) \sim \text{Gamma}(a,b+100)$. The posterior mean and variance are, respectively,

$$E(\theta | Z = 1) = \frac{a}{b + 100} \quad \text{and} \quad V(\theta | Z = 1) = \frac{a}{(b + 100)^2}.$$

(b) If the sample $X = 100$ is observed exactly, then we have the likelihood $\theta e^{-100\theta}$. Combined with the gamma prior, we get another gamma posterior, i.e., $\theta | (X = 100) \sim \text{Gamma}(a+1,b+100)$. The posterior mean and variance are, respectively,

$$E(\theta | X = 100) = \frac{a+1}{b + 100} \quad \text{and} \quad V(\theta | X = 100) = \frac{a+1}{(b + 100)^2}.$$

(c) Notice that $V(\theta | Z = 1) < V(\theta | X = 100)$; that is, the posterior variance for the censored observation is smaller than that for the exact observation. This is counter-intuitive because one would expect the posterior variance to be smaller when a more informative sample is available. Although this is counter-intuitive, the mathematics aren’t wrong. The connection we have between these posterior variances is the following:

$$E\{V(\theta | X)\} + V\{E(\theta | X)\} = E\{V(\theta | Z)\} + V\{E(\theta | Z)\},$$

where the equality is due to the fact that both the right- and left-hand sides equal the prior variance $V(\theta) = a/b^2$. From this it is clear that the only connection is based on expectations, so for particular X and Z, the counter-intuitive relationship between posterior variance is surely possible.

2. Let $(X_1, \ldots, X_n) \mid \mu \sim \text{N} (\mu, \sigma^2)$, with σ^2 known.

(a) (Problem 2.3a in [GDS].) Goal is to test $H_0 : \mu \leq \mu_0$ vs. $H_1 : \mu > \mu_0$, where μ_0 is some fixed value. The p-value for this test is

$$\text{pval}(H_0; z) = 1 - \Phi(Z) = \Phi(-z),$$

where $z = n^{1/2} (\bar{x} - \mu_0)/\sigma$. If we take a uniform prior for μ, i.e., the prior density is constant on \mathbb{R}, then it is easy to check (by symmetry of the normal PDF) that the posterior distribution of μ is $\text{N}(\bar{x}, \frac{\sigma^2}{n})$. Therefore, the posterior probability of H_0 is

$$\Pi(H_0 \mid x) = \Pi(\mu \leq \mu_0 \mid x) = \Phi(-z).$$

This is the same as the p-value.
(b) (Problem 2.21 in [GDS].) Now consider $H_0 : \mu = \mu_0$ vs. $H_1 : \mu \neq \mu_0$. This time, the p-value is
\[
pval(H_0; z) = 2\{1 - \Phi(|z|)\}.
\]
For the posterior probability of H_0, we have
\[
\Pi(H_0 \mid x) = \frac{\Pi(H_0)m_0(x)}{\Pi(H_0)m_0(x) + \Pi(H_1)m_1(x)} = \frac{m_0(x)}{m_0(x) + m_1(x)},
\]
where $\Pi(H_0) = \Pi(H_1) = \frac{1}{2}$ are the prior probabilities for the two hypotheses, and $m_0(x)$ and $m_1(x)$ are the marginal likelihoods under H_0 and H_1, respectively. For H_0, the marginal likelihood is easy:
\[
m_0(x) = L(\mu_0) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} e^{-\frac{n}{2\sigma^2}(\bar{x}^2 + (\bar{x} - \mu_0)^2)},
\]
where $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$. For H_1, the marginal likelihood will require some integration:
\[
m_1(x) = \int L(\mu)\pi(\mu) \, d\mu = \left(\frac{1}{n}\right)^{1/2} \left(\frac{1}{2\pi\sigma^2}\right)^{(n-1)/2} e^{-n\hat{\sigma}^2/2\sigma^2} \int \left(\frac{n}{2\pi\sigma^2}\right)^{1/2} e^{-\frac{n}{2\sigma^2}(\bar{x}^2 - \mu^2)} \pi(\mu) \, d\mu.
\]
Under H_1, the prior $\pi(\mu)$ is a $N(\mu_0, \tau^2)$ density; note that the prior mean is the mean value under H_0. The integral above corresponds to the marginal density of \bar{X} under the model $\bar{X} \mid \mu \sim N(\mu, \frac{\sigma^2}{n})$ and $\mu \sim N(\mu_0, \tau^2)$. This distribution is easy to find without integration: it’s normal with mean
\[
E(\bar{X}) = E\{E(\bar{X} \mid \mu)\} = \mu_0
\]
and variance
\[
V(\bar{X}) = V\{E(\bar{X} \mid \mu)\} + E\{V(\bar{X} \mid \mu)\} = \tau^2 + \sigma^2/n.
\]
Therefore, the marginal likelihood under H_0 is
\[
m_1(x) = \left(\frac{1}{n}\right)^{1/2} \left(\frac{1}{2\pi\sigma^2}\right)^{(n-1)/2} e^{-n\hat{\sigma}^2/2\sigma^2} \left(\frac{1}{2\pi(\tau^2 + \sigma^2/n)}\right)^{1/2} e^{-\frac{n}{2(\tau^2 + \sigma^2/n)}(\bar{x} - \mu_0)^2}
\]
\[
= \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} e^{-n\hat{\sigma}^2/2\sigma^2} \left(\frac{\sigma^2}{2\pi(n\tau^2 + \sigma^2)}\right)^{1/2} e^{-\frac{\sigma^2}{2(n\tau^2 + \sigma^2)}(\bar{x} - \mu_0)^2}.
\]
Canceling out all the common factors in $m_0(x)$ and $m_1(x)$ we can finally write the posterior probability for H_0 as
\[
\Pi(H_0 \mid x) = \frac{e^{-\frac{n}{2\sigma^2}(\bar{x} - \mu_0)^2}}{e^{-\frac{n}{2\sigma^2}(\bar{x} - \mu_0)^2} + \left(\frac{\sigma^2}{2\pi(n\tau^2 + \sigma^2)}\right)^{1/2} e^{-\frac{n\tau^2}{2(n\tau^2 + \sigma^2)}(\bar{x} - \mu_0)^2}}
\]
\[
= \frac{1}{1 + \left(\frac{\sigma^2}{2\pi(n\tau^2 + \sigma^2)}\right)^{1/2} e^{-\frac{n\tau^2}{n\tau^2 + \sigma^2}}},
\]
Figure 1: P-value and posterior probability of H_0 as a function of the z-score z.

where z is as defined above. To see that this can differ from the p-value, we plot $pval(H_0; z)$ and $\Pi(H_0 \mid z)$ as functions of z, where $n = 10$, $\sigma^2 = 1$, and $\tau^2 = 2$. You can see in Figure 1 that the p-value and posterior probability are drastically different at some intermediate values, e.g., between 1 and 2. In particular, it can happen that $p-value \leq 0.1$ and posterior ≥ 0.5.

3. — (Problem 2.13bc in [GDS].) Suppose $X_1, \ldots, X_k \sim \text{Bin}(n, p)$ where both n and p are unknown. Here n is the parameter of interest; p is a nuisance parameter. Here we construct some likelihood functions for n. Note that the usual likelihood is

$$L(n, p) = \prod_{i=1}^{k} \left(\frac{n}{X_i} \right)^{n_{X_i}} (1 - p)^{n - X_i} = \prod_{i=1}^{n} \left(\frac{n}{X_i} \right)^{n_{X_i}} \cdot \frac{p^{k \bar{X}} (1 - p)^{nk - k \bar{X}}}{nk}.$$

(i) Profile likelihood. For a given n, it is easy to check that the conditional MLE $\hat{p}(n)$ is \bar{X}/n. Therefore, the profile likelihood is just the usual likelihood with $\hat{p}(n) = \bar{X}/n$ plugged in, i.e.,

$$L_{\text{prof}}(n) = L(n, \hat{p}(n)) = \prod_{i=1}^{n} \left(\frac{n}{X_i} \right)^{n_{X_i}} \left[\hat{p}(n) \hat{p}(n) (1 - \hat{p}(n))^{1 - \hat{p}(n)} \right]^{nk}.$$

(ii) Conditional likelihood. The conditional PMF of (X_1, \ldots, X_k), given the sum $\sum_{i=1}^{k} X_i$, has distribution free of p. Let’s check this. Let

$$g(x_1, \ldots, x_k; t) = P(X_1 = x_1, \ldots, X_k = x_k \mid X_1 + \cdots + X_k = t).$$

In the calculation that follows, we consider only (x_1, \ldots, x_k) and t such
that \(\sum_i x_i = t \); in any other case, the conditional probability is zero. Then

\[
g(x_1, \ldots, x_k; t) = \frac{P(X_1 = x_1, \ldots, X_k = x_k, X_1 + \cdots + X_k = t)}{P(X_1 + \cdots + X_k = t)}
\]

\[
= \frac{P(X_1 = x_1, \ldots, X_k = t - x_1 - \cdots - x_{k-1})}{P(X_1 + \cdots + X_k = t)}
\]

\[
= \prod_{i=1}^{k-1} \binom{n}{x_i}(t-x_1-\cdots-x_{k-1})p^i(1-p)^{nk-t}
\]

\[
= \prod_{i=1}^{k-1} \binom{n}{x_i}(t-x_1-\cdots-x_{k-1})
\]

Then the conditional likelihood is

\[
L_{\text{cond}}(n) = \prod_{i=1}^{k-1} \binom{n}{x_i}. \binom{nk}{X_1+\cdots+X_k}
\]

(iii) If we consider a uniform prior on \(p \), then the marginal likelihood is

\[
L_{\text{marg1}}(n) = \int_0^1 L(n, p) \, dp = \prod_{i=1}^n \binom{n}{X_i} B(k\bar{X} + 1, nk - k\bar{X} + 1),
\]

where \(B(\cdot, \cdot) \) is the usual beta function.

(iv) If we consider Jeffreys prior for \(p \), i.e., \(p \sim \text{Beta}(\frac{1}{2}, \frac{1}{2}) \), then the marginal likelihood is similar to that above:

\[
L_{\text{marg2}}(n) = \int_0^1 L(n, p) \pi(p) \, dp = \prod_{i=1}^n \binom{n}{X_i} B(k\bar{X} + \frac{1}{2}, nk - k\bar{X} + \frac{1}{2}).
\]

If we’re given data \(X = (17, 19, 21, 28, 30) \), so that \(k = 5 \) and \(\bar{X} = 23 \), we can plot the various likelihood functions for \(n \). These are shown in Figure 2. There we see that the profile and conditional likelihoods are unbounded (at least on a range comparable to that shown), whereas the two genuine marginal likelihoods are bounded with peaks in the range 80–100.

— (Problem 2.14 in [GDS].)

(a) The vector \(\mu \) is a location parameter in the \(p \)-variate normal.

(b) Clearly, the marginal distributions of \(X \) and \(\mu \) are \(\mathcal{N}_p(\eta, \Gamma + \Sigma) \) and \(\mathcal{N}_p(\eta, \Gamma) \), respectively, so all we need to do is see that the joint distribution is \(2p \)-variate normal. This can be seen by multiplying the marginal density for \(\mu \) and the conditional density for \(X \), given \(\mu \). To figure out the off-diagonal elements of the joint covariance matrix, we need to know \(C(X, \mu) \). Since \(X = \mu + \varepsilon \), we get

\[
C(X, \mu) = C(\mu + \varepsilon, \mu) = V(\mu) + C(\varepsilon, \mu) = V(\mu) = \Gamma.
\]

(c) Look at the general results at, e.g., http://en.wikipedia.org/wiki/Multivariate_normal_distribution#Conditional_distributions
Figure 2: Various “marginal likelihoods” for n in the binomial problem; these are normalized by dividing by the respective maxima over the shown range.

(d) The posterior mean for μ is

$$\eta_x := \mathbb{E}(\mu \mid x) = \Gamma(\Sigma + \Gamma)^{-1} x + \Sigma(\Sigma + \Gamma)^{-1} \eta,$$

and the posterior covariance/dispersion matrix is

$$\Gamma_x := \mathcal{V}(\mu \mid x) = \Gamma - \Gamma(\Sigma + \Gamma)^{-1}\Gamma.$$

A HPD credible region for μ would be one where the posterior density $\pi(\mu \mid x)$ is bigger than some constant. Clearly this is equivalent to a set where $(\mu - \eta_x)^\top \Gamma_x^{-1} (\mu - \eta_x) \leq c$. Since the quantity on the left-hand side of this inequality is a ChiSq(p) random variable, to make the credible region have posterior probability $1 - \alpha$, we should take c to equal $\chi^2_p(\alpha)$, the $100(1 - \alpha)$ percentile of the ChiSq(p) distribution, i.e.,

credible region $= \{m : (m - \eta_x)^\top \Gamma_x^{-1} (m - \eta_x) \leq \chi^2_p(\alpha)\}$.

(e) If the prior for μ is uniform, i.e., the prior density is constant, then the posterior is still normal; this is an easy consequence of the symmetry of the normal density. In particular, under the uniform prior, the posterior is $N_p(x, \Sigma)$. The rest of the problem is just like above.

4. (a) Just multiply the prior PDF and multinomial PMF. Easy to see that posterior is also of Dirichlet form, with $a_i' = a_i + x_i$, $i = 1, \ldots, 4$.

(b) One can simulate from a Dirichlet distribution, say, $\theta \sim \text{Dir}_4(a')$ by simulating four independent gamma random variables and dividing each by the sum. That is, take $\lambda_i \sim \text{Gamma}(a'_i, 1)$, $i = 1, \ldots, 4$, independent, and define

$$\theta = \left(\frac{\lambda_1}{\lambda_+}, \frac{\lambda_2}{\lambda_+}, \frac{\lambda_3}{\lambda_+}, \frac{\lambda_4}{\lambda_+}\right),$$

where $\lambda_+ = \sum_{i=1}^4 \lambda_i$. The rest of the problem is just like above.
where $\lambda_+ = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4$. Now, if $g(\theta)$ is a function of θ, then we can simulate from the posterior distribution of $g(\theta)$ by sampling θ as described above, and then applying the g function to the sampled θ.

(c) We can use the recipe above to simulate from the posterior of θ and, consequently, the posterior of κ. A histogram of 3000 posterior samples, with $a = (1,1,1,1)$, based on the data from Homework #1, is shown in Figure 3. This histogram looks similar to that for the bootstrap distribution of the MLE in Homework #1. The 90% equip-tailed credible interval is $(-0.085, 0.213)$, which is also similar to the corresponding bootstrap interval.
R code for Problem 2.21 in [GDS].

```r
n <- 10
sigma2 <- 1
tau2 <- 2
pval <- function(z) 2 * (1 - pnorm(abs(z)))
post <- function(z) {
a <- sigma2 / (n * tau2 + sigma2)
o <- 1 / (1 + sqrt(a / 2 / pi) * exp(-(a - 1) * z**2))
return(o)
}
curve(pval, xlim=c(-3, 3), xlab="z", ylab="Null prob", col="gray", lwd=2)
curve(post, lwd=2, add=TRUE)
legend(x="topright", inset=0.05, lwd=2, col=c("gray", "black"), c("pval", "post"))
```

R code for Problem 2.13c in [GDS].

```r
x <- c(17, 19, 21, 28, 30)
k <- length(x)
sx <- sum(x)
Lprof <- function(n) {
o <- 0 * n
for(i in seq_along(n)) {
    phat <- sx / k / n[i]
g <- sum(lchoose(n[i], x))
o[i] <- g + sx * log(phat) + (n[i] * k - sx) * log(1 - phat)
}
return(exp(o))
}
Lcond <- function(n) {
o <- 0 * n
for(i in seq_along(n)) {
g <- sum(lchoose(n[i], x))
o[i] <- g - log(choose(n[i] * k, sx))
}
return(exp(o))
}
Lmarg1 <- function(n) {
o <- 0 * n
for(i in seq_along(n)) {
g <- sum(lchoose(n[i], x))
o[i] <- g + log(beta(sx + 1, n[i] * k - sx + 1))
}
```
Lmarg2 <- function(n) {
 o <- 0 * n
 for(i in seq_along(n)) {
 g <- sum(lchoose(n[i], x))
 o[i] <- g + log(beta(sx + 0.5, n[i] * k - sx + 0.5))
 }
 return(exp(o))
}

N <- max(x):(7 * max(x))
LprofN <- Lprof(N)
LcondN <- Lcond(N)
Lmarg1N <- Lmarg1(N)
Lmarg2N <- Lmarg2(N)
plot(0, 0, type="n", xlim=range(N), ylim=c(0,1), xlab="n", ylab="L(n)")
lines(N, LprofN / max(LprofN))
lines(N, LcondN / max(LcondN), lty=2)
lines(N, Lmarg1N / max(Lmarg1N), lty=3)
lines(N, Lmarg2N / max(Lmarg2N), lty=4)
legend(x="bottomright", inset=0.05, lty=1:4, c("prof", "cond", "marg1", "marg2"))

R code for the Dirichlet-Multinomial example in Problem 4.

rdir <- function(a, dim) {
 if(length(a) != dim) stop("Mismatched dimensions!")
 V <- rgamma(dim, shape=a)
 return(V / sum(V))
}

g <- function(u) {
 return(fn)
}

x <- c(22, 15, 33, 30)
n <- sum(x)
a <- 1 + 0 * x
ax <- a + x
kappa <- numeric(3000)
for(m in 1:3000) kappa[m] <- g(rdir(ax, 4))
hist(kappa, freq=FALSE, col="gray", border="white", xlab=expression(kappa), ylab="Posterior")
cred.int <- as.numeric(quantile(kappa, c(0.05, 0.95)))

8