Rational Equivariant Forms

Abdelkrim El-basraoui

CRM-CICMA-Concordia University

Mai 1, 2011

Atkin’s Memorial Lecture and Workshop

This is joint work with Abdellah Sebbar.
Let us fix some notation:

\[\mathcal{H} := \{ z \in \mathbb{C}; \Im(z) > 0 \} , \quad \mathcal{H}^* := \mathcal{H} \cup \mathbb{P}^1(\mathbb{Q}) , \]

\[\text{SL}_2(\mathbb{Z}) := \text{the modular group}, \]

\[\alpha \cdot z := \frac{az + b}{cz + d}, \quad \alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}), \quad z \in \mathbb{C}. \]

\(\Gamma \) is a subgroup of \(\text{SL}_2(\mathbb{Z}) \) of finite index, which we call a modular subgroup.

(We would like to mention that all what we present here, in fact, holds for any discrete subgroup of \(\text{SL}_2(\mathbb{R}) \)).
Preliminaries: The Schwarz derivative:

For a meromorphic function on a domain (open and connected) of \(\mathbb{C} \), the Schwarz derivative, denoted \(\{ f, z \} \), is defined by

\[
\{ f, z \} = 2 \left(\frac{f''}{f'} \right)' - \left(\frac{f''}{f'} \right)^2 \tag{1}
\]

\[
= \frac{2f'f''' - 3f''^2}{f'^2}.
\]

It satisfies the following rules.

- **Chain rule:** If \(w \) is a function of \(z \) then
 \[
 \{ f, z \} = (dw/dz)^2 \{ f, w \} + \{ w, z \}.
 \]

- Consequently, for \(\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(\mathbb{C}) \), we have
 \[
 \{ w, z \} = \frac{\det \alpha}{(cz + d)^4} \{ w, \alpha \cdot z \}. \tag{2}
 \]
Preliminaries: The Schwarz derivative:

For a meromorphic function on a domain (open and connected) of \(\mathbb{C} \), the Schwarz derivative, denoted \(\{f, z\} \), is defined by

\[
\{f, z\} = 2 \left(\frac{f''}{f'} \right)' - \left(\frac{f''}{f'} \right)^2
= \frac{2f'f''' - 3f''^2}{f'}.
\]

(1)

It satisfies the following rules.

- **Chain rule:** If \(w \) is a function of \(z \) then
 \[
 \{f, z\} = (dw/dz)^2 \{f, w\} + \{w, z\}.
 \]

- Consequently, for \(\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(\mathbb{C}) \), we have
 \[
 \{w, z\} = \frac{\det \alpha}{(cz + d)^4} \{w, \alpha \cdot z\}.
 \]

(2)
Preliminaries: The Schwarz derivative:

- \(\{f, z\} = 0 \) if and only if \(f \) is a linear fractional transform of \(z \).
- \(\{w_1, z\} = \{w_2, z\} \) if and only if each function \((w_i) \) is a linear fraction of the other.
- Inversion formula: If \(w'(z_0) \neq 0 \) for some point \(z_0 \), then in a neighborhood of \(z_0 \),
 \[
 \{z, w\} = -(dz/dw)^2\{w, z\}.
 \]

Lastly, given a meromorphic function \(f \) on a domain \(D \) of \(\mathbb{C} \), then one deduces the following proposition:

Proposition

The Schwarz derivative \(\{f, z\} \) of \(f \) has a double pole at the critical points of \(f \) and is holomorphic elsewhere including at simple poles of \(f \).
This is due to J. McKay and A. Sebbar.
Suppose now that f is a modular function for some modular subgroup Γ.

Proposition (M-S)

i. If f is a modular function for Γ then $\{f, z\}$ is a (meromorphic) weight 4 modular form for Γ.

ii. If in addition Γ is of genus 0 and f is a Hauptmodul for Γ, then $\{f, z\}$ is weight 4 (holomorphic if Γ is torsion free) modular form for the normalizer of Γ inside $SL_2(\mathbb{R})$.

What about the converse?
In other words, given meromorphic function f on \mathbb{H} such that $\{f, z\}$ is a weight 4 modular form on a modular subgroup Γ, what can be said about the invariance group G_f of f.
This is due to J. McKay and A. Sebbar.

Suppose now that \(f \) is a modular function for some modular subgroup \(\Gamma \).

Proposition (M-S)

i. If \(f \) is a modular function for \(\Gamma \) then \(\{f, z\} \) is a (meromorphic) weight 4 modular form for \(\Gamma \).

ii. If in addition \(\Gamma \) is of genus 0 and \(f \) is a Hauptmodul for \(\Gamma \), then \(\{f, z\} \) is weight 4 (holomorphic if \(\Gamma \) is torsion free) modular form for the normalizer of \(\Gamma \) inside \(SL_2(\mathbb{R}) \).

What about the converse?

In other words, given meromorphic function \(f \) on \(\mathbb{H} \) such that \(\{f, z\} \) is a weight 4 modular form on a modular subgroup \(\Gamma \), what can be said about the invariance group \(G_f \) of \(f \).
In fact, using properties of the Schwarz derivative, we have for \(\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \)

\[
\{ f(\alpha \cdot z), \alpha \cdot z \} = (cz + d)^4 \{ f(z), z \} \quad \text{(modularity)}
\]

\[
= (cz + d)^4 \{ f(\alpha \cdot z), z \} \quad \text{(prpty the Schz. der.)}
\]

Hence

\[
\{ f(\alpha \cdot z), z \} = \{ f(z), z \}
\]

and therefore

\[
f(\alpha \cdot z) = \Phi_\alpha \cdot f(z), \quad \text{for some } \Phi_\alpha \in \text{GL}_2(\mathbb{C}).
\]
In particular, we have

\[\Phi : \Gamma \longrightarrow \text{GL}_2(\mathbb{C}) \]

\[\alpha \mapsto \Phi\alpha \]

is a group homomorphism. Moreover, \(G_f = \text{Ker} \Phi \).

Theorem (S)

If \(f \) is as above and is such that \(f(z + n) = f(z) \), \(n \in \{1, 2, 3, 4, 5\} \), then \(f \) is a modular function for \(\Gamma(n) = G_f \).

There are some cases where \(G_f \), for instance \(\log(f) \), \(f \) a Hauptmodul of \(\Gamma(n) \) with \(n \) as above, is no larger than \(< T^m > \), for some \(m \) \((T = (1 1 \atop 0 1)) \).

Question: when \(G_f \) is trivial?
This is the case if \(\Phi \) is injective.
In particular, we have

\[\Phi : \Gamma \longrightarrow \text{GL}_2(\mathbb{C}) \]

\[\alpha \longmapsto \Phi_\alpha \]

is a group homomorphism. Moreover, \(G_f = \text{Ker} \Phi \).

Theorem (S)

If \(f \) *is as above and is such that*

\[f(z + n) = f(z), \quad n \in \{1, 2, 3, 4, 5\}, \]

then \(f \) *is a modular function for* \(\Gamma(n) = G_f \).

There are some cases where \(G_f \), for instance \(\log(f) \), \(f \) a Hauptmodul of \(\Gamma(n) \) with \(n \) as above, is no larger than \(< T^m > \), for some \(m \) \((T = (\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix})\))

Question: when \(G_f \) is trivial?

This is the case if \(\Phi \) is injective.
In particular, we have

\[\Phi : \Gamma \rightarrow \text{GL}_2(\mathbb{C}) \]

\[\alpha \mapsto \Phi_\alpha \]

is a group homomorphism. Moreover, \(G_f = \text{Ker} \Phi \).

Theorem (S)

If \(f \) is as above and is such that \(f(z + n) = f(z) \), \(n \in \{1, 2, 3, 4, 5\} \), then \(f \) is a modular function for \(\Gamma(n) = G_f \).

There are some cases where \(G_f \), for instance \(\log(f) \), \(f \) a Hauptmodul of \(\Gamma(n) \) with \(n \) as above, is no larger than \(< T^m > \), for some \(m \) \((T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix})\).

Question: when \(G_f \) is trivial?

This is the case if \(\Phi \) is injective.
In particular, we have
\[\Phi : \Gamma \longrightarrow \text{GL}_2(\mathbb{C}) \]
\[\alpha \longmapsto \Phi_\alpha \]
is a group homomorphism. Moreover, \(G_f = \text{Ker} \Phi \).

Theorem (S)

If \(f \) is as above and is such that \(f(z + n) = f(z) \), \(n \in \{1, 2, 3, 4, 5\} \), then \(f \) is a modular function for \(\Gamma(n) = G_f \).

There are some cases where \(G_f \), for instance \(\log(f) \), \(f \) a Hauptmodul of \(\Gamma(n) \) with \(n \) as above, is no larger than \(< T^m > \), for some \(m \) \((T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}) \).

Question: when \(G_f \) is trivial?

This is the case if \(\Phi \) is injective.
For the rest of this talk, Φ is the natural injection of Γ into $\text{GL}_2(\mathbb{C})$. Hence, our functions are of the following type.

Definition

A meromorphic function h on \mathcal{H} is called an equivariant function for Γ if it satisfies

$$h(\alpha \cdot z) = \alpha \cdot h(z), \quad \text{for all } \alpha \in \Gamma.$$

A first, obvious, example is $f(z) = z$.

A larger class comes from

Proposition

Let f be a weight k, $k \in \mathbb{Z}$, modular form for Γ. Then the function

$$h_f(z) = z + \frac{kf(z)}{f'(z)} \quad (\star)$$

is an equivariant function.
For the rest of this talk, \(\Phi \) is the natural injection of \(\Gamma \) into \(\text{GL}_2(\mathbb{C}) \). Hence, our functions are of the following type.

Definition

A meromorphic function \(h \) on \(\mathcal{H} \) is called an equivariant function for \(\Gamma \) if it satisfies
\[
h(\alpha \cdot z) = \alpha \cdot h(z), \quad \text{for all } \alpha \in \Gamma.
\]

A first, obvious, example is \(f(z) = z \).

A larger class comes from

Proposition

Let \(f \) be a weight \(k, \; k \in \mathbb{Z} \), modular form for \(\Gamma \). Then the function
\[
h_f(z) = z + \frac{k f(z)}{f'(z)} \quad (\star)
\]
is an equivariant function.
Equivariant "functions": first examples

For the rest of this talk, Φ is the natural injection of Γ into $GL_2(\mathbb{C})$. Hence, our functions are of the following type.

Definition

A meromorphic function h on \mathcal{H} is called an equivariant function for Γ if it satisfies

$$h(\alpha \cdot z) = \alpha \cdot h(z), \quad \text{for all } \alpha \in \Gamma.$$

A first, obvious, example is $f(z) = z$.

A larger class comes from

Proposition

Let f be a weight k, $k \in \mathbb{Z}$, modular form for Γ. Then the function

$$h_f(z) = z + \frac{kf(z)}{f'(z)}$$

is an equivariant function.
The general definition

We define a "slash operator" on equivariant functions via the following action of $\text{SL}_2(\mathbb{R})$ on meromorphic functions on \mathcal{H}. For a meromorphic function f and $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{R})$, we let

$$f\|_{[\gamma]}(z) = j_\gamma(z)^{-2}f(\gamma \cdot z) - cj_\gamma(z)^{-1}, \quad j_\gamma(z) = cz + d.$$

For a meromorphic function h on \mathcal{H}, set $H(z) = (h(z) - z)^{-1}$. Then we have

Proposition

The function h is an equivariant function for Γ if and only if $H\|_{[\gamma]}(z) = H(z)$ for all $\gamma \in \Gamma$. Furthermore, $H\|_{[-\gamma]}(z) = H\|_{[\gamma]}(z)$ if $-1_2 \in \Gamma$.
We define a "slash operator" on equivariant functions via the following action of \(\text{SL}_2(\mathbb{R}) \) on meromorphic functions on \(\mathbb{H} \). For a meromorphic function \(f \) and \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{R}) \), we let

\[
f||[\gamma](z) = j_\gamma(z)^{-2}f(\gamma \cdot z) - cj_\gamma(z)^{-1}, \quad j_\gamma(z) = cz + d.
\]

For a meromorphic function \(h \) on \(\mathbb{H} \), set \(H(z) = (h(z) - z)^{-1} \).

Then we have

Proposition

The function \(h \) is an equivariant function for \(\Gamma \) if and only if \(H||[\gamma](z) = H(z) \) for all \(\gamma \in \Gamma \). Furthermore, \(H||[-\gamma](z) = H||[\gamma](z) \) if \(-1,2 \in \Gamma \).
The general definition

Definition

An equivariant function for \(\Gamma \) is called an **equivariant form** for \(\Gamma \) if it satisfies

1. \(h \) is meromorphic on \(\mathcal{H} \);
2. \(h \) is meromorphic at the cusps, meaning that the function \(H||[\gamma](z) \) is meromorphic at infinity for all \(\gamma \in \text{SL}_2(\mathbb{Z}) \).

Example

For \(f \in M_k^m(\Gamma), \ k \neq 0 \), the equivariant function \(h_f = z + kf/f' \) (as in (\(\star \))) is therefore an equivariant form.

Proposition

Suppose that \(\Gamma_1 \) and \(\Gamma_2 \) are conjugate subgroups of \(\text{SL}_2(\mathbb{Z}) \), say \(\Gamma_1 = \alpha \Gamma_2 \alpha^{-1} \), for \(\alpha \in \text{GL}_2^+(\mathbb{Q}) \). Then if \(h_1 \) is an equivariant form on \(\Gamma_1 \), the function \(h_2(z) = \alpha^{-1} \circ h_1 \circ \alpha(z) \) is an equivariant form on \(\Gamma_2 \).
The general definition

Definition

An equivariant function for Γ is called an **equivariant form** for Γ if it satisfies

1. h is meromorphic on \mathcal{H};
2. h is meromorphic at the cusps, meaning that the function $H\|\{\gamma\}(z)$ is meromorphic at infinity for all $\gamma \in \text{SL}_2(\mathbb{Z})$.

Example

For $f \in M_k^m(\Gamma), \ k \neq 0$, the equivariant function $h_f = z + k f / f'$ (as in (\star)) is therefore an equivariant form.

Proposition

Suppose that Γ_1 and Γ_2 are conjugate subgroups of $\text{SL}_2(\mathbb{Z})$, say $\Gamma_1 = \alpha \Gamma_2 \alpha^{-1}$, for $\alpha \in \text{GL}_2^+(\mathbb{Q})$. Then if h_1 is an equivariant form on Γ_1, the function $h_2(z) = \alpha^{-1} \circ h_1 \circ \alpha(z)$ is an equivariant form on Γ_2.

Abdelkrim El-basraoui
Rational Equivariant Forms
The general definition

Definition

An equivariant function for Γ is called an **equivariant form** for Γ if it satisfies

1. h is meromorphic on \mathcal{H};
2. h is meromorphic at the cusps, meaning that the function $H || [\gamma](z)$ is meromorphic at infinity for all $\gamma \in \text{SL}_2(\mathbb{Z})$.

Example

For $f \in M^m_k(\Gamma)$, $k \neq 0$, the equivariant function $h_f = z + kf/f'$ (as in (\star)) is therefore an equivariant form.

Proposition

Suppose that Γ_1 and Γ_2 are conjugate subgroups of $\text{SL}_2(\mathbb{Z})$, say $\Gamma_1 = \alpha \Gamma_2 \alpha^{-1}$, for $\alpha \in \text{GL}_2^+(\mathbb{Q})$. Then if h_1 is an equivariant form on Γ_1, the function $h_2(z) = \alpha^{-1} \circ h_1 \circ \alpha(z)$ is an equivariant form on Γ_2.
Rational Equivariant forms

Definition

An equivariant form is called a **rational equivariant form** if it arises from a modular form (of weight $k \neq 0$).

Proposition

For $c \in \mathbb{C}$ and $n \in \mathbb{Z}^\times$, we have

$$h f^n = h cf = h f = z + k f / f', f \in M^m_k(\Gamma).$$

Proposition

For conjugate subgroups Γ_1, Γ_2, if $h_1(z) = z + k f(z) / f'(z)$, $f \in M^m_k(\Gamma_1)$, is a rational equivariant form then so is

$$h_2(z) = \alpha^{-1} \circ h_1 \circ \alpha(z),$$

and we have

$$h_2(z) = z + \frac{k(f|_{k[\alpha]})(z)}{(f|_{k[\alpha]})'(z)}.$$
An equivariant form is called a rational equivariant form if it arises from a modular form (of weight $k \neq 0$).

For $c \in \mathbb{C}$ and $n \in \mathbb{Z}^\times$, we have
$$h_f^n = h_{cf} = h_f = z + k \frac{f}{f'}, f \in M^m_k(\Gamma).$$

For conjugate subgroups Γ_1, Γ_2, if $h_1(z) = z + k \frac{f(z)}{f'(z)}$, $f \in M^m_k(\Gamma_1)$, is a rational equivariant form then so is
$$h_2(z) = \alpha^{-1} \circ h_1 \circ \alpha(z),$$
and we have
$$h_2(z) = z + \frac{k(f|_k[\alpha])(z)}{(f|_k[\alpha])'(z)}.$$
Definition

An equivariant form is called a rational equivariant form if it arises from a modular form (of weight $k \neq 0$).

Proposition

For $c \in \mathbb{C}$ and $n \in \mathbb{Z}^\times$, we have

$$hf^n = h_{cf} = h_f = z + kf/f', f \in M^m_k(\Gamma).$$

Proposition

For conjugate subgroups Γ_1, Γ_2, if $h_1(z) = z + k f(z)/f'(z)$, $f \in M^m_k(\Gamma_1)$, is a rational equivariant form then so is

$$h_2(z) = \alpha^{-1} \circ h_1 \circ \alpha(z), \text{ and we have } h_2(z) = z + \frac{k(f|_{k[\alpha]})(z)}{(f|_{k[\alpha]})'(z)}.$$
Rational Equivariant Forms

Example

A fundamental example corresponds to the modular discriminant Δ

$$h_\Delta(z) = z + 12\Delta(z)/\Delta'(z) = z + 6/\pi i E_2(z).$$

Remarks

- The trivial example $h_t(z) = z$ does not fit in the above setting, however we can ”associate” it to modular functions.

- The zeros and poles of the function $H_f(z) = (h_f(z) - z)^{-1}$ are all simple and have rational residues. Indeed, if n is the multiplicity of f at z_0 (a pole or a zero), then z_0 is a simple pole of H_f with residue n/k. At a cusp s of Γ and $\gamma \in \text{SL}_2(\mathbb{Z})$ such that $\gamma \cdot s = \infty$, one can see that

$$\frac{1}{2i\pi} \lim_{z \to i\infty} H_f||[\gamma^{-1}](z) = \frac{n}{k l_s} \in \mathbb{Q},$$

where n is the order of infinity in the q_s-expansion of $f|_k[\gamma^{-1}](z)$ and l_s is the cusp width at s of Γ. This justifies the use of ”rational”.
Example

A fundamental example corresponds to the modular discriminant Δ

$$h_\Delta(z) = z + 12\Delta(z)/\Delta'(z) = z + 6/\pi i E_2(z).$$

Remarks

- The trivial example $h_t(z) = z$ does not fit in the above setting, however we can ”associate” it to modular functions.
- The zeros and poles of the function $H_f(z) = (h_f(z) - z)^{-1}$ are all simple and have rational residues. Indeed, if n is the multiplicity of f at z_0 (a pole or a zero), then z_0 is a simple pole of H_f with residue n/k. At a cusp s of Γ and $\gamma \in \text{SL}_2(\mathbb{Z})$ such that $\gamma \cdot s = \infty$, one can see that

$$\frac{1}{2i\pi} \lim_{z \to i\infty} H_f|[\gamma^{-1}](z) = \frac{n}{k l_s} \in \mathbb{Q},$$

where n is the order of infinity in the q_s-expansion of $f|_k[\gamma^{-1}](z)$ and l_s is the cusp width at s of Γ. This justifies the use of ”rational”.
Question: When an equivariant form is a rational equivariant form?

The following proves that the conditions of the remark are in fact also sufficient.

Theorem

Let Γ be a modular subgroup and let h be an equivariant form for Γ. Then h is rational if and only if

1. The poles of H in \mathcal{H} are all simple with rational residues.
2. For each cusp s of Γ and $\gamma \in \text{SL}_2(\mathbb{Z})$ with $\gamma \cdot s = \infty$, we have

$$\frac{1}{2i\pi} \lim_{z \to i\infty} H||[\gamma^{-1}](z) \in \mathbb{Q}.$$

To prove this one has to establish the following lemmas.
Question: When an equivariant form is a rational equivariant form?
The following proves that the conditions of the remark are in fact also sufficient.

Theorem
Let Γ be a modular subgroup and let h be an equivariant form for Γ. Then h is rational if and only if

1. The poles of H in \mathcal{H} are all simple with rational residues.
2. For each cusp s of Γ and $\gamma \in \text{SL}_2(\mathbb{Z})$ with $\gamma \cdot s = \infty$, we have

$$\frac{1}{2i\pi} \lim_{z \to i\infty} |H||[\gamma^{-1}](z) \in \mathbb{Q}.$$

To prove this one has to establish the following lemmas.
Lemma

Let Γ be a modular subgroup, and let h be an equivariant form for Γ. Then H has only a finite number of poles in the closure of a fundamental domain of Γ.

Lemma

Suppose that h is equivariant for a modular subgroup Γ such that H has only simple poles in \mathcal{H}, then the set of the residues at these poles is finite.

The theorem then follows by associating to h the function

$$f(z) = \exp \left(\int_{z_0}^{z} kH(u)\,du \right),$$

where $z_0 \in \mathcal{H}$ not a zero of H and k is chosen to make disappear the denominators of the (finitely many) rational residues. The function f is in fact a modular form of wght k.
Lemma

Let Γ be a modular subgroup, and let h be an equivariant form for Γ. Then H has only a finite number of poles in the closure of a fundamental domain of Γ.

Lemma

Suppose that h is equivariant for a modular subgroup Γ such that H has only simple poles in \mathcal{H}, then the set of the residues at these poles is finite.

The theorem then follows by associating to h the function

$$f(z) = \exp \left(\int_{z_0}^{z} kH(u)du \right),$$

where $z_0 \in \mathcal{H}$ not a zero of H and k is chosen to make disappear the denominators of the (finitely many) rational residues. The function f is in fact a modular form of wght k.
In the case of genus zero subgroups

Theorem

Let h be an equivariant form on a subgroup Γ of $\text{SL}_2(\mathbb{Z})$ of genus 0 such that $h(z) \neq z$ for all $z \in H$. Suppose also that, for every cusp s, if $\gamma \in \text{SL}_2(\mathbb{Z})$ is such that $\gamma \cdot s = \infty$, we have

$$\lim_{z \to i\infty} H||[\gamma^{-1}](z) = a_s$$

is finite and satisfies $(a_s/6) \in \pi i \mathbb{Z}$. Then

$$h(z) = h_\Delta(z) = z + \frac{6}{\pi i E_2(z)}.$$
Yes!

Theorem

Let Γ be a modular subgroup and let f and g be modular forms of weights k and $k + 2$ respectively, then

$$h(z) = z + k \frac{f(z)}{f'(z) + g(z)}$$

is an equivariant form for Γ.

A complete classification will appear in a joint work with Abdellah Sebbar, with a complete structure (an affine space) and geometric “correspondences”.
Yes!

Theorem

Let Γ be a modular subgroup and let f and g be modular forms of weights k and $k + 2$ respectively, then

$$h(z) = z + k \frac{f(z)}{f'(z) + g(z)}$$

is an equivariant form for Γ.

A complete classification will appear in a joint work with Abdellah Sebbar, with a complete structure (an affine space) and geometric ”correspondences”.
Are there other examples?

Yes!

Theorem

Let Γ be a modular subgroup and let f and g be modular forms of weights k and $k + 2$ respectively, then

$$h(z) = z + k \frac{f(z)}{f'(z) + g(z)}$$

is an equivariant form for Γ.

A complete classification will appear in a joint work with Abdellah Sebbar, with a complete structure (an affine space) and geometric "correspondences".
Proposition

If \(h \) is an equivariant form for \(\Gamma \), then \(\{h, z\} \) is a weight 4 modular form on \(\Gamma \).

In the case of rational equivariant forms, this is connected to the Cohen-Rankin bracket, which is defined for \(n \geq 0 \) with \(D^j = \frac{d^j}{dz^j} \) by

\[
[f, g]_n = \sum_{r+s=n} \binom{k+n-1}{r+s} \binom{l+n-1}{r} D^r f \ D^s g , \quad r, s \geq 0 .
\]

It is known that for \(f \in M_k^m(\Gamma) \) and \(g \in \mathcal{M}_l^m(\Gamma) \) and for every \(n \geq 0 \), the function \([f, g]_n\) belongs to \(\mathcal{M}_{k+l+2n}^m(\Gamma) \).

Proposition

Let \(f \) be a modular form of weight \(k \) on \(\Gamma \) and \(h_f \) the corresponding rational equivariant form. Then \(f'^2 h'_f \) is a weight \(2k + 4 \) modular form on \(\Gamma \). Moreover, the poles of \(\{h_f, z\} \) are located at the zeros of the second Cohen-Rankin bracket \([f, f]_2\) of \(f \).
Proposition

If \(h \) is an equivariant form for \(\Gamma \), then \(\{ h, z \} \) is a weight 4 modular form on \(\Gamma \).

In the case of rational equivariant forms, this is connected to the Cohen-Rankin bracket, which is defined for \(n \geq 0 \) with \(D^j = \frac{d^j}{dz^j} \) by

\[
[f, g]_n = \sum_{r+s=n} \binom{k+n-1}{s} \binom{l+n-1}{r} D^r f D^s g , \quad r, s \geq 0 .
\]

It is known that for \(f \in \mathcal{M}_k^m(\Gamma) \) and \(g \in \mathcal{M}_l^m(\Gamma) \) and for every \(n \geq 0 \), the function \([f, g]_n\) belongs to \(\mathcal{M}_{k+l+2n}^m(\Gamma) \).

Proposition

Let \(f \) be a modular form of weight \(k \) on \(\Gamma \) and \(h_f \) the corresponding rational equivariant form. Then \(f^\prime h_f^\prime \) is a weight \(2k + 4 \) modular form on \(\Gamma \). Moreover, the poles of \(\{ h_f, z \} \) are located at the zeros of the second Cohen-Rankin bracket \([f, f]_2\) of \(f \).
The Effect of the Schwarz Derivative and the Cohen-Rankin Bracket

Proposition

If \(h \) is an equivariant form for \(\Gamma \), then \(\{h, z\} \) is a weight 4 modular form on \(\Gamma \).

In the case of rational equivariant forms, this is connected to the Cohen-Rankin bracket, which is defined for \(n \geq 0 \) with \(D^j = \frac{d^j}{dz^j} \) by

\[
[f, g]_n = \sum_{r+s=n} \binom{k+n-1}{s} \binom{l+n-1}{r} D^r f D^s g , \quad r, s \geq 0 .
\]

It is known that for \(f \in \mathcal{M}_k^m(\Gamma) \) and \(g \in \mathcal{M}_l^m(\Gamma) \) and for every \(n \geq 0 \), the function \([f, g]_n \) belongs to \(\mathcal{M}_{k+l+2n}^m(\Gamma) \).

Proposition

Let \(f \) be a modular form of weight \(k \) on \(\Gamma \) and \(h_f \) the corresponding rational equivariant form. Then \(f'^2 h'_f \) is a weight \(2k + 4 \) modular form on \(\Gamma \). Moreover, the poles of \(\{h_f, z\} \) are located at the zeros of the second Cohen-Rankin bracket \([f, f]_2 \) of \(f \).
Theorem 6

The Eisenstein series E_2 has infinitely many zeros in the half-strip $\mathcal{S} = \{ \tau \in \mathbb{H}, -\frac{1}{2} < \text{Re}(\tau) \leq \frac{1}{2} \}$.

The proof is as follows. One first observes that, for each $z \in \mathbb{H}$ such that $h_\Delta(z) \in \mathbb{Q}$, the $\text{SL}_2(\mathbb{Z})$-equivalence class of z contains a zero of E_2. Fix such a point z_0. Then, in any neighborhood U of z_0, the function h_Δ takes infinitely many rational values, and so any neighborhood of z_0 contains infinitely many points that are equivalent to a zero of E_2. If U is sufficiently small then, each equivalence class of a point of U meets U in at most 3 points (about the vertices of a fundamental domain of $\text{SL}_2(\mathbb{Z})$). In fact, as z_0 cannot be an elliptic point, one can choose U such that U is in the interior of some fundamental domain for $\text{SL}_2(\mathbb{Z})$, and then the points of U are two by two inequivalent.
Theorem 6
The Eisenstein series E_2 has infinitely many zeros in the half-strip $\mathcal{S} = \{\tau \in \mathbb{H}, -\frac{1}{2} < \text{Re}(\tau) \leq \frac{1}{2}\}$.

The proof is as follows. One first observes that, for each $z \in \mathbb{H}$ such that $h_\Delta(z) \in \mathbb{Q}$, the $\text{SL}_2(\mathbb{Z})$-equivalence class of z contains a zero of E_2. Fix such a point z_0. Then, in any neighborhood U of z_0, the function h_Δ takes infinitely many rational values, and so any neighborhood of z_0 contains infinitely many points that are equivalent to a zero of E_2. If U is sufficiently small then, each equivalence class of a point of U meets U in at most 3 points (about the vertices of a fundamental domain of $\text{SL}_2(\mathbb{Z})$). In fact, as z_0 cannot be an elliptic point, one can choose U such that U is in the interior of some fundamental domain for $\text{SL}_2(\mathbb{Z})$, and then the points of U are two by two inequivalent.
An Application: The zeros of E_2

So, U contains infinitely many points in the equivalence class of distinct zeros of E_2.

Note that the strict monotonicity of E_2 on the imaginary axis provides us with the point z_0.

Finally, shift all the zeros to the strip \mathcal{S} and notice that E_2 is invariant under translation and has integer coefficients.
The Cross-ratio of Equivariant Forms

Proposition

Let h_1, h_2, h_3, h_4 be four equivariant forms on a modular subgroup Γ. Define a function f as the cross-ratio of these four elements

$$f = (h_1, h_2; h_3, h_4) = \frac{(h_1 - h_3)(h_2 - h_4)}{(h_2 - h_3)(h_1 - h_4)}.$$

Then, if $h_2 \neq h_3$ and $h_1 \neq h_4$, the function f is a modular function on Γ.

This actually gives a parametrization of equivariant forms by modular functions.

Proposition

We have

$$1728(h_t, h_{E_6}; h_{E_4}, h_\Delta) = j.$$
The Cross-ratio of Equivariant Forms

Proposition

Let h_1, h_2, h_3, h_4 be four equivariant forms on a modular subgroup Γ. Define a function f as the cross-ratio of these four elements

\[f = (h_1, h_2; h_3, h_4) = \frac{(h_1 - h_3)(h_2 - h_4)}{(h_2 - h_3)(h_1 - h_4)}. \]

Then, if $h_2 \neq h_3$ and $h_1 \neq h_4$, the function f is a modular function on Γ.

This actually gives a parametrization of equivariant forms by modular functions.

Proposition

We have

\[1728(h_t, h_{E_6}; h_{E_4}, h_\Delta) = j. \]
Thank you for your attention!

&

Special thanks to Ramin!