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Abstract. In recent work, Schweber [7] introduces a framework for reverse mathe-

matics in a third order setting and investigates several natural principles of transfinite

recursion. The main result of that paper is a proof, using the method of forcing, that in

the context of two-person perfect information games with moves in R, open determinacy

(ΣR
1 -DET) is not implied by clopen determinacy (∆R

1 -DET). In this paper, we give an-

other proof of this result by isolating a level of L witnessing this separation. We give a

notion of β-absoluteness in the context of third-order arithmetic, and show that this level

of L is a β-model; combining this with our previous results in [2], we show that Σ0
4-DET,

determinacy for games on ω with Σ0
4 payoff, is sandwiched between ΣR

1 -DET and ∆R
1 -DET

in terms of β-consistency strength.

§1. Introduction. Reverse mathematics, initiated and developed by Harvey
Friedman, Stephen Simpson, and many others, is the project of classifying the-
orems of ordinary mathematics according to their intrinsic strength (a thorough
account of the subject is given in [8]). This project has been enormously fruitful
in clarifying the underlying strength of theorems, classical and modern, formal-
izable in second order arithmetic. However, the second order setting precludes
study of objects of higher type (e.g., arbitrary functions f : R → R), and a
number of frameworks have been proposed for reverse math in higher types. For
example, Kohlenbach [3] develops a language and base theory RCAω0 to accom-
modate all finite types, and shows it is conservative over the second order theory
RCA0; Schweber [7] defines a theory RCA3

0 for three types over which RCAω0 is
conservative.

In this paper, we are interested in higher types because of their necessary use
in proofs of true statements of second order arithmetic, namely, in proofs of
Borel determinacy. The reverse mathematical strength of determinacy for the
first few levels of the Borel hierarchy has been well-investigated ([9], [10], [11],
[12], [6]). However, as Montálban and Shore [6] show, determinacy even for ω-
length differences of Π0

3 sets is not provable in Z2, full second order arithmetic,
and by the celebrated results of Friedman [1] and Martin [4], [5], determinacy
for games with Σ0

n+4 payoff, for n ∈ ω, requires the existence of Pn+1(ω), the
n+ 1-st iterated Power set of ω.

In light of this, the third order framework developed by Schweber [7] seems
a natural setting for investigating the strength of Σ0

4 determinacy. In addition
to defining the base theory RCA3

0, Schweber introduces a number of natural
versions of transfinite recursion principles in the third order context; he then
proceeds to show that many of these are not equivalent over the base theory. In
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particular, he shows that Open determinacy for games played with real-number
moves (ΣR

1 -DET) is strictly stronger than Clopen determinacy (∆R
1 -DET) . The

argument given there is a technical forcing construction, and it is asked ([7]
Question 5.2) whether this separation is witnessed by some level of Gödel’s L,
say the least satisfying “P (ω) exists + ∆R

1 -DET”.
This latter question turns out to be related to our recent work [2] investigat-

ing the strength of Σ0
4-DET, determinacy for games on ω with Σ0

4 payoff. As
mentioned above, this determinacy lies beyond the reaches of ordinary second
order arithmetic, and so the calibration there is given in terms of models of set
theory, viz., levels of L. For example,

Theorem 1.1 ([2]). Working over Π1
1-CA0, the determinacy of all Σ0

4 games
is equivalent to the existence of a countable ordinal θ so that Lθ |= “P(ω) exists,
and for any tree T of height ω, either T has an infinite branch or there is a map
ρ : T → ON so that ρ(x) < ρ(y) whenever x ) y.”

If θ is the least such ordinal, then it is also the least ordinal so that every Σ0
4

game is determined as witnessed by a strategy in Lθ+1.

In fact, we found Lθ is a model of RCA3
0 +∆R

1 -DET +¬ΣR
1 -DET, so answering

Schweber’s question in the affirmative; this is proved in the next section.
In light of this result, it seemed plausible that the results of [2] could be

elegantly reformulated in terms of higher-order arithmetic. Indeed, the defining
property of Lθ bears a resemblance to that of β-model from reverse mathematics:
a structure (ω, S) (where S ⊆ P(ω)) in the language of second order arithmetic
is a β-model if it satisfies all true Σ1

1 statements in parameters from S. We
wondered: Can the three-sorted structure (ω, (R)Lθ , (ωR)Lθ ) be characterized as
a minimal β-model of some natural theory in third-order arithmetic?

We here provide such a characterization. We describe a translation from β-
models in third-order arithmetic to transitive models of set theory, much in the
spirit of the second order translation given in [8]. Combining these results with
the theorem, we obtain: Σ0

4-DET is equivalent over Π1
1-CA0 to the existence of

a countably-coded β-model of projective transfinite recursion, or Π1
∞-TRR; as

we shall see, the latter theory is the natural analogue of ATR0 in the third-
order setting, and is equivalent (modulo the existence of selection functions for
R-indexed sets of reals) to ∆R

1 -DET.

§2. Separating ΣR
1 -DET and ∆R

1 -DET. We begin by showing that Lθ is a
witness to the main separation result of Schweber [7].

Theorem 2.1. Lθ is a model of ∆R
1 -DET, but not of ΣR

1 -DET.

Proof. Working in Lθ, suppose T ⊆ P(ω)<ω is a tree with no infinite branch.
We will show that the game where Players I and II alternate choosing nodes of
a branch through T is determined (here a player loses if he is the first to leave
T ).

In [2], it is shown that Lθ is a model of the following Π1-Reflection Principle
(Π1-RAP): Whenever Q is a set of reals (that is, Q ⊆ P(ω)) and ϕ(Q) is a true
Π1 formula, there is some admissible set M so that Q ∩M ∈ M, M |= “P(ω)
exists”, and ϕ(Q ∩M) holds in M .
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Suppose the game on T is undetermined. This is a Π1 statement in parameters:
it states that for any strategy σ for either player, there is a finite sequence
s ∈ P(ω)<ω against which this strategy loses the game on T (note that we may
use P(ω) as a parameter, so the existential quantifier is bounded). By Π1-RAP,
let M be an admissible set with T̄ = T ∩M ∈M so that M |= “P(ω) exists and
neither player wins the game on T̄”. Note that T̄ is a wellfounded tree (in V),
and by basic properties of admissible sets, we have a map f : T̄ → ON∩M in
M so that s ( t implies f(s) > f(t). Working in M , we may therefore define by
induction on the wellfounded relation ) ∩(T̄ × T̄ ) a partial function ρ : T̄ → ON
in M by

ρ(s) = µα[(∀x)(∃y)s_〈x〉 ∈ T̄ → ρ(s_〈x, y〉) < α].

Let us say an element in the domain of ρ is ranked. We claim for every s ∈ T̄ ,
either s is ranked or some real x exists with s_〈x〉 ∈ T̄ ranked. For suppose not,
and let s be )-minimal such. Then whenever x is such that s_〈x〉 ∈ T̄ , there is
some y so that ρ(s_〈x, y〉) exists. By admissibility, we can find some α so that
if s_〈x〉 ∈ T̄ , then for some y, ρ(s_〈x, y〉) < α.

So, either ∅ is ranked, or 〈x〉 is ranked for some x. It is easy to see that
a winning strategy in the game on T̄ (for II in the first case, I in the second)
is definable from ρ. But this contradicts the fact that the game on T̄ is not
determined in M .

So ∆R
1 -DET holds in Lθ. It remains to show ΣR

1 -DET fails. Note that if
T ∈ Lθ is a tree on P(ω)Lθ , then if σ is a winning strategy (for either player)
for the game on T in Lθ, σ is also winning in V (if σ is for the open player, then
being a winning strategy is simply the statement that no terminal nodes are
reached by σ; if σ is for the closed player, then the tree of plays in T compatible
with τ is wellfounded, so is ranked in Lθ).

Note further that Lθ is not admissible, and Σ1-projects to ω with parameter
{ωLθ1 }; in particular, Lθ does not contain the real {k | Lθ |= φk(ωLθ1 )} (here
〈φk〉k∈ω is some standard fixed enumeration of Σ1 formulae with one free vari-
able). We will define an open game on L

ω
Lθ
1

so that Player II (the closed player)

wins in V , but any winning strategy for II computes this theory; by what was
just said, no winning strategy can belong to Lθ.

For the rest of the proof, we let ω1 denote ωLθ1 . The game proceeds as follows:
In round −1, Player I plays an integer k; Player II responds with 0 or 1, and a
model M0. In all subsequent rounds n < ω, Player I plays a real xn in P(ω)Lθ ,
and Player II responds with a pair πn,Mn+1:

I k x0 x1 . . .
II i ∈ {0, 1},M0 π0,M1 π1,M2 . . .

Player II must maintain the following conditions, for all n ∈ ω:

• Mn is a countable transitive model of “P(ω) exists”;

• πn : Mn →Mn+1 is a Σ0-elementary embedding with πn(ωMn
1 ) = ω

Mn+1

1 ;
• xn ∈Mn+1, and for all trees T ∈Mn, πn(T ) is either ranked or illfounded

in Mn+1;
• For all a ∈Mn, Mn+1 |= (∃α)πn(a) ∈ Lα;

• Mn |= φ(ωMn
1 ) if and only if i = 1.
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Note the second condition entails that πn has critical point ωMn
1 . The first player

to violate a rule loses; Player II wins all infinite plays where no rules are violated.
We first claim that Player II wins this game in V . We describe a winning

strategy. If I plays k, have Player II respond with 1 if and only if φ(ω1) holds in
Lθ. If 1 was played, let α0 < θ be sufficiently large that Lα0

|= φ(ω1); otherwise
let α0 = ω1 +ω. Inductively, let αn+1 < θ be the least limit ordinal so that every
wellfounded tree in Lαn is ranked in Lαn+1

. (Note such exists: the direct sum
of all wellfounded trees T ∈ Lαn belongs to Lαn+1, since Lαn has Σ1 projectum

ωLθ1 . If β is large enough that this sum is ranked in Lβ , then all wellfounded
trees of Lαn are also ranked in Lβ .)

Now let H0 be the Σ0-Hull of {Lω1
} in Lα0

(that is, H0 is the closure in Lα0
of

{Lω1
} under taking <L-least witnesses to bounded existential quantifiers). Let

M0 be its transitive collapse. Inductively, having defined Hn ⊂ Lαn and given
a real xn played by I, let Hn+1 be the Σ0-Hull of Hn ∪ {Lαn , xn} ∪ {f ∈ Lαn |
f is the rank function of a wellfounded tree T ∈ Hn} inside Lαn+1 . Let Mn+1

be its transitive collapse, and πn,n+1 : Mn → Mn+1 be the map induced by the
inclusion embedding. Inductively, each Hn (hence Mn) is countable and belongs
to Lθ (since θ is limit). The remaining rules are clearly satisfied by the πn,Mn.
So II wins in V , as desired.

All that’s left is to show that any winning strategy for II responds to k with 1
if and only if Lθ |= φk(ω1); it follows that no winning strategy (for either player)
can belong to Lθ. So suppose σ is winning for II. Let 〈xn〉n∈ω be an enumeration
of the reals of P(ω)Lθ . Then σ replies with a sequence 〈πn,Mn〉n∈ω of models
and embeddings; these form a directed system. Let Mω be the direct limit, with
πn,ω : Mn → ω the limit embedding. Since crit(πn) = ωMn

1 for each n, the ω1

of Mω is wellfounded. Moreover, by the rules of the game, Mω is a model of
V = L+“all wellfounded trees are ranked”, and since all reals of Lθ were played,
we have ωMω

1 = ωLθ1 .
Now suppose towards a contradiction that σ played a truth value of φ(ω1) that

disagreed with the truth value of φ(ω1) in Lθ. Then the model Mω is illfounded;
let wfo(Mω) be the supremum of its wellfounded ordinals. By the truncation
lemma for models of V = L (Proposition 2.5 in [2]), Lwfo(Mω) is admissible. But
by minimality in the definition of θ, no α with ω1 < α ≤ θ can have Lα be
admissible. So we must have wfo(Mω) > θ. But as remarked above, Lθ Σ1-
projects to ω, whereas Lwfo(Mω) is a proper end extension of Lθ with the same
ω1. This is a contradiction. a

§3. β-models of third-order arithmetic. We adopt the definitions of the
language and structures of third-order arithmetic introduced in [7]. We briefly
recall some salient points. The language L3 is a many-sorted first order language
consisting of three sorts: s0 corresponds to naturals, s1 to functions x : ω →
ω, and s2 to functionals F : ωω → ω. Non-logical symbols include the usual
signature {+,×, <, 0, 1} for arithmetic on s0, application operators ·0 and ·1,
equality relations =0,=1,=2 for their respective sorts, and binary operations
∗ : s2 × s1 → s1 and _ : s0 × s1 → s1. The latter operations are introduced to
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allow for coding. Namely, under the intended interpretation,

k_x = 〈k, x(0), x(1), x(2), . . . 〉
F ∗ x = 〈F (0_x), F (1_x), F (2_x), . . . 〉.

Here of course we are denoting type 1 objects x : ω → ω as 〈x(0), x(1), . . . 〉.
Note that in what follows we will adopt the convention that the first time a fresh
variable appears, its type will be denoted by a superscript (x1, F 2, etc.).

Recall that a structure M = (M0,M1) in the language of second order arith-
metic is a β-model if M0 is isomorphic to the standard natural numbers, and
whenever x ∈ M1 and φ(u) is a Σ1

1 formula, we have M |= φ(x) if and only if
φ(x) is true (understood as a statement about the unique real corresponding to
x). Equivalently, M is a β-model if whenever T ⊆ ω<ω is a tree coded by a
real in M1 (under some standard coding of finite sequences of naturals), we have
that M |= “T is illfounded” whenever T is illfounded. For simplicity’s sake, we
use the latter characterization to define a notion of β-model in the third-order
context.

Fix a coding 〈·〉 : R≤ω → R of length ≤ ω sequences of reals by reals, in such
a way that if x codes a sequence, then the length lh(x) of the sequence coded
is uniquely determined, (x)i denotes the i-th element of the sequence, and x is
the unique real so that 〈(x)i〉i<lh(x) = x. By a tree on R, we mean a functional

T 2 : R → 2 so that T takes value 1 only on codes for finite sequences, so that
{〈x0, . . . , xi〉 | T (〈x0, . . . , xi〉) = 1} is a tree in the usual sense.

Definition 3.1. Let M = (M0,M1,M2) be an L3 structure. We say M is
a β-model if M0 = ω, M1 ⊆ ωω = R, and M2 ⊆ ωM1 ; and whenever T 2 is a
(functional in M2 coding) a tree on M1, if T has an infinite branch, then M
satisfies (∃x1)(∀k)(x)k ( (x)k+1 ∧ T ((x)k) = 1.

That is, trees on RM in M are wellfounded (in V ) if and only if they are
wellfounded in M. We would have liked to define M to be a β-model if for
any Σ1

1 formula ∃x1φ(x, y, F ) with parameters from M1 ∪M2, we have, for any
y ∈ M1, F ∈ M2, that M |= ∃xφ(x, y, F ) if and only if ∃xφ(x, y, F ) is true;
but we must be careful about what we mean by “true”. For, if x is a real not
in M1, then the value F (x) is not defined. There are a number of ways to get
around this, e.g., by appropriately altering the language L3 and our base theory
to accommodate a built-in coding of sequences of reals by reals. But it is more
straightforward in our case to use the definition of β-model above.

We will be primarily interested in models of fragments of set theory, considered
as β-models of third-order arithmetic. If M = (M,∈) is a transitive set with
ω ∈ M , we will refer to M as a model of third-order arithmetic, keeping in
mind we are really referring to the structure (ω,M ∩ ωω,M ∩ ωM∩R). It is
immediate from our definitions that Lθ is a β-model. Indeed, whenever α is
an ordinal with ωLθ1 < α ≤ θ, then Lα is a β-model; this follows from the fact
that branches through trees on R are themselves (coded by) reals. Consequently,

taking collapses of Skolem hulls, we have many β-models Lγ with γ < ωLθ1 .
Our aim is to show that Lθ can be recovered from certain β-models, from

which it will follow that Lθ is the minimal β-model of ∆R
1 -DET. Our starting

point is a connection between ∆R
1 -DET and the third-order analogue of ATR0.
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Definition 3.2. Π1
∞-TRR is the theory in third-order arithmetic that asserts

the following, for every Π1
n formula φ(x1, Y 2) with the displayed free variables.

Suppose W ⊆ R×R is a regular relation. Then there is a functional θ : R×R→ 3
so that

(∀a1 ∈ dom(W ))(∀x1)θ(a, x) =

{
1 if φ(x, θ � {b | 〈b, a〉 ∈W}),
0 otherwise.

Here for A ⊆ R, θ � A denotes the functional θ′ so that for all x, if b ∈ A,
θ′(b, x) = θ(b, x), and if b /∈ A then θ′(b, x) = 2.

Note here we regard a functional W : R → ω as a binary relation if it de-
termines the characteristic function of one; i.e., if there is a set dom(W ) ⊆ R
so that W (x) < 2 whenever x = 〈a, b〉 for some a, b ∈ dom(W ), and otherwise
W (x) = 2. A binary relation is regular if whenever A ⊆ dom(W ) is non-empty,
there is some W -minimal a ∈ A. Be warned: we will routinely conflate the
functionals of third-order arithmetic and the subsets of R,R<ω,Rω, etc., which
these functionals represent.

The idea of Π1
∞-TRR is that for each a ∈ dom(W ), the map x 7→ θ(a, x) is

the characteristic function of the set of reals obtained by iterating the defining
formula φ along the wellfounded relation W on R up to a. Note that strictly
speaking, Π1

∞-TRR is projective wellfounded recursion, in that the relation W
along which we iterate is not required to be a wellorder. This suits our pur-
poses because we will iterate definitions along wellfounded trees on R; taking
the Kleene-Brouwer ordering of such a tree requires a wellordering of R, but we
would like to use as little choice as possible.

The following lemma makes reference to TR1(R), introduced also in [7]. This
is the restriction of Π1

∞-TRR to the case that φ is Σ1
1 and W is a wellorder.

Lemma 3.3. The following theories are equivalent over RCA3
0:

(1) ∆R
1 -DET;

(2) TR1(R) + SF(R);
(3) Π1

∞-TRR + SF(R).

Proof. Clearly, (3) implies (2). The equivalence of (1) and (2) is proved in
[7]; and the proof that (1) implies the Σ1

1 case in (3) is the essentially same proof
given there for TR1(R) with the appropriate adjustments. So all that is left to
show is that Σ1

1-wellfounded recursion implies Π1
∞-TRR.

So suppose inductively that we have Σ1
n-wellfounded recursion, that W is a

wellfounded relation on R, and that φ(w1, x1, Y 2) is a Π1
n formula. We wish to

prove the instance of wellfounded recursion along W with formula (∃w)φ.
We define W̄ to be a binary relation on ω×R so that W̄ is isomorphic to the

product 3×W ; namely,

W̄ (i_x, j_y) =

 1 if i, j < 3 and W (x, y) = 1 or x = y and i < j
0 if i, j < 3 and W (x, y) 6= 1 and x 6= y or i ≥ j
2 in all other cases.

The idea is to iterate Σ1
n-wellfounded recursion along W̄ , breaking up into the

three stages of applying ¬φ, taking complements, and taking projections. So let
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us define the formula φ̄(z, Y ) by

φ̄(z, Y ) ⇐⇒ (∃i0, a1)a ∈ dom(W ), Y (i_a, x) = 2 and

i = 0, (∃w1, x1)z = 〈w, x〉, and ¬φ(w, x, [〈b, y〉 7→ Y (2_b, y)]); or

i = 1, (∃w1, x1)z = 〈w, x〉, and Y (0_a, z) = 0; or

i = 2 and (∃w1)Y (1_a, 〈w, z〉) = 1.

To see φ̄ is Σ1
n, it is enough to show the relation ¬φ(w, x, [〈b, y〉 7→ Y (2_b, y)])

is Σ1
n (as a relation on w, x, Y ). But this follows from the fact (checked to be

provable in RCA3
0) that if Y ′ is a functional Π0

∞-definable from Y , then for any
Σ1
n formula π, there is, uniformly in π and the definition of Y ′ from Y , a Σ1

n

formula π′, so that

(∀x1)π′(x, Y ) ⇐⇒ π(x, Y ′).

We obtain the result by applying Σ1
n-wellfounded recursion to W̄ with φ̄. From

the θ obtained, the desired instance of Σ1
n+1 recursion is witnessed by the relation

〈a, x〉 7→ θ(2_a, x) (which exists by ∆0
1-Comprehension). a

We remark that the uniqueness of the functional θ is provable from the Σ1
1-

Comprehension scheme (which itself follows from TR1(R)), using regularity of
the relation W applied to {a ∈ dom(W ) | (∃x1)θ1(a, x) 6= θ2(a, x)}.

§4. From β-models to set models. In this section we show that from any
β-model M of Π1

∞-TRR, one can define a transitive set model M set with the
same reals and functionals; and furthermore, any set model so obtained contains
Lθ as a subset. By what we have shown, Lθ is a β-model of Π1

∞-TRR, so this
proves that Lθ is the minimal β-model of Π1

∞-TRR.
These results are essentially a recapitulation in the third-order context of

the correspondence between β-models of ATR0 and wellfounded models ATRset
0

described in Chapter VII.3-4 of [8]; therefore we omit most details, taking care
mainly where the special circumstances of the third-order situation arise.

Let M be a L3-structure modelling Π1
∞-TRR. Working inside M, we say

T : R→ ω is a suitable tree if

1. T codes a tree on R,
2. T is non-empty, i.e. T (〈〉) = 1, and
3. T is regular: if A ⊆ T , there is a ∈ A with no proper extension in A.

The third item is understood to quantify over type-2 objects corresponding to
characteristic functions of subsets of T . We take suitable trees to be regu-
lar because this is what’s required by Π1

∞-TRR and is possibly stronger than
non-existence of a branch; of course the two are equivalent assuming DCR, in
particular, in β-models.

Now supposeM is a β-model. If T is a tree on RM coded by some functional in
M2, then T is suitable inM if and only if T is (non-empty and) wellfounded. We
will define M set to be the set of collapses of suitable trees in M. Namely, given
a wellfounded tree, define by recursion on the wellfounded relation ) ∩(T × T ),

f(s) = {f(s_〈a〉) | a ∈ R ∧ s_〈a〉 ∈ T}.
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Then put |T | = f(〈〉). Notice that |T | need not be transitive, as we only take
f(s) to be the pointwise image of one-step extensions of s. We define

M set = {|T | | T ∈M2 is a suitable tree}.

Such M set is transitive: If T is a suitable tree in M then any x ∈ |T | is |Ts| for
some s ∈ T . But Ts = {t | s_t ∈ T} is evidently a suitable tree, and belongs to
M by ∆0

1-Comprehension.
Although we are interested primarily in β-models of Π1

∞-TRR, it is worth
making a definition of M set that works for ω-models of Π1

∞-TRR, that is, models
M with standard ω so that M1 ⊆ R and M2 ⊆ ωM1 . Working inside such an
M, say that ISO(T 2, X2) holds, where T is a suitable tree, if X ⊆ T × T and
for all s, t ∈ T , we have

〈s, t〉 ∈ X ⇐⇒ (∀x1)[s_〈x〉 ∈ T → (∃y1)(t_〈y〉 ∈ T ∧ 〈s_〈x〉, t_〈y〉〉 ∈ X)

∧t_〈x〉 ∈ T → (∃y1)(s_〈y〉 ∈ T ∧ 〈s_〈y〉, t_〈x〉〉 ∈ X)].

(The point is, 〈s, t〉 ∈ X if and only if |Ts| = |Tt|). The existence and uniqueness
of an X so that ISO(T,X) holds is provable in Π1

∞-TRR, using the fact that T is
suitable. Letting n̄ denote the real 〈n, n, n, . . .〉, we may define S⊕T , for suitable
trees S, T , as the set of sequences {〈0̄〉_s | s ∈ S} ∪ {〈1̄〉_t | t ∈ T}. Then set
S =∗ T iff for the unique X with ISO(S ⊕ T,X), we have 〈〈0̄〉, 〈1̄〉〉 ∈ X; and
set S ε T iff for the unique X with ISO(S ⊕ T,X), there is some real x so that
〈〈0̄〉, 〈〈1̄, x〉〉 ∈ X. Then provably in Π1

∞-TRR, =∗ is an equivalence relation on
the class of suitable trees, and ε is well-defined and extensional relation on the
equivalence classes [T ]=∗ , so inducing a relation ∈∗ on these. We define

M set = 〈{[T ]=∗ | T ∈M2 is a suitable tree in M},∈∗〉.

For β-models M, the M set we obtain is a wellfounded structure, and is isomor-
phic to the transitive set M set defined above, via the map [T ]=∗ 7→ |T |. For
brevity, we will from now on refer to [T ]=∗ as |T | (even for T in non β-models,
so that T may be illfounded in V ).

Recall now some basic axiom systems in the language of set theory. BST
is the theory consisting of Extensionality, Foundation, Pair, Union, and ∆0-
Comprehension. Axiom Beta, which we denote Axβ, states that every regular
relation r has a collapse map; that is, a map f : dom(r) → V so that for all
x ∈ dom(r), f(x) = {f(y) | 〈y, x〉 ∈ r}.

Proposition 4.1. Let M be an ω-model of Π1
∞-TRR. Then

1. M set is an ω-model of BST + Axβ + “P(ω) exists”.
2. M and M set have the same reals x : ω → ω and functionals F : R → ω;

that is, M1 = R ∩M set and M2 = (ωR∩Mset

) ∩M set.
3. In M set, every set is hereditarily of size at most 2ω; that is, for all x ∈M set,

there is an onto map f : P(ω)M
set → tcl(x) in M set, where tcl(x) denotes

the transitive closure of x.

4. If α ∈ ONMset

, then M set |= “Lα exists”; furthermore, LM
set

α = Lα when
α is in the wellfounded part of M set.

5. M set is wellfounded if and only if M is a β-model.
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Proof. (1) Since M is an ω-model of RCA3
0, the tree

{〈n̄0, n̄1, . . . , n̄k〉 | (∀i < k)ni+1 < ni}
belongs to M2. Clearly it is a suitable tree in M, and |T | ∈ M set is the ω of
M set. That P(ω) exists in M set is a similar exercise in coding: given any real
x, there is a canonical tree T (x) so that |T (x)| = x, membership in T (x) being
uniformly Π1

∞-definable from x; and from any suitable tree collapsing to a real,

one can define in Π1
∞-TRR the x it collapses to. So P(ω)M

set

is precisely |T |,
where T = {〈〉} ∪ {〈x〉_s | s ∈ T (x)}.

For the axioms of BST, Extensionality follows from the fact that the relation
∈∗ is extensional on M set. Pair and Union are straightforward, only requiring
Σ1

1-Comprehension to show that from given suitable trees S, T ∈ M2, one can
define trees corresponding to {|S|, |T |} and

⋃
|S|.

∆0-Comprehension is similar. Notice here that although the relations = ∗
and ∈∗ are in general Σ2

1, when restricted to a given tree T with parameter X
witnessing ISO(T,X), the relations |Ts| =∗ |Tt| and |Ts| ∈∗ |Tt|, regarded as
binary relations T , are each Π1

2 in the parameters T,X. From this, one shows
by induction on formula complexity that for any ∆0 formula φ(u1, . . . , uk) in the
language of set theory, the k-ary relation on T defined by

P (s1, . . . , sk) ⇐⇒ M set |= φ(|Ts1 |, . . . , |Tsk |)
is Π1

n for some n (again, in the parameter X). ∆0-Comprehension is then
straightforward to prove.

For Foundation, suppose towards a contradiction T is a suitable tree so that
in M set, |T | is a non-empty set with no ∈∗-minimal element. Let X witness
ISO(T,X). Then

A = {s ∈ T | (∃x1)〈x〉 ∈ T ∧ 〈〈x〉, s〉 ∈ X}
is a set of nodes in T such that every element of A can be properly extended in
A. This contradicts suitability of T .

Axβ is in a similar vein. Given a suitable tree R so that |R| = r is a regular
relation in M set, verify that the relation W = {〈s, t〉 ∈ R × R | 〈|Rs|, |Rt|〉 ∈ r}
is a regular relation in M. A tree F so that |F | : dom(r)→ ON is precisely the
collapse map is then defined by Π1

∞-TRR along the relation W .
(2) The inclusion ⊆ is another coding exercise. The reverse follows from ∆0-

Comprehension in M set.
(3) Define a suitable F so that f = |F | ⊇ {〈s, |Ts|〉 | s ∈ T}.
(4) The construction is very nearly identical to that of Lemma VII.4.2 of [8].

The only modifications are that we work in Π1
∞-TRR, and so do not induct along

a wellorder; rather, we induct along the suitable tree A for which α = |A|. The
ramified language we define therefore makes use of variables vai , where i ∈ ω and

a ∈ A, intended to range over LM
set

|Ta| . The rest of the proof is unchanged.

(5) Evidently ifM is a β-model, every suitable tree inM is in fact wellfounded,
so that ∈∗ is a wellfounded relation. Conversely, if M is not a β-model, there
some tree T whichM thinks is suitable, but is not wellfounded. Then if 〈sn〉n∈ω
is a branch through T , the sequence 〈|Tsn |〉n∈ω witnesses illfoundedness of ∈∗. a

Theorem 4.2. Let M be a β-model of Π1
∞-TRR. Then Lθ ⊆M set.
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Proof. Work in M set. Notice that ω1 exists by an application of Axβ to
the regular relation {〈x, y〉 | x, y are wellorders of ω with x isomorphic to an
initial segment of y}. Now if ωL1 < ω1, we’re done, since Lω1 is then a model
of ZF + “P(ω) exists”, so θ must exist and be less than ω1. So we can suppose
ωL1 = ω1.

We have that every tree on P(ω) is either ranked or illfounded; we claim the
same is true in L. For suppose T ∈ L is a tree on P(ω)∩L. If T is ranked, then
let ρ : T → ON be the ranking function. Let α be large enough that T ∈ Lα.
Then it is easily checked that ρ ∈ Lα+ω·ρ(∅); note the latter exists because (by
Axβ) the ordinals are closed under ordinal + and ·.

Now suppose T is illfounded. Then let x = 〈xi〉i∈ω be a branch through T .
Note that each xi ∈ L, hence in Lω1 . Let αi be sufficiently large that xi ∈ Lαi .
Since ω1 = ωL1 , the map i 7→ αi is bounded in ωL1 (note M set models DCR, so ω1

is regular in M set). So we have some admissible level Lγ with γ < ω1 so that
α = supi∈ω αi < γ; but then T ∩ Lα is an illfounded tree, so has some branch
definable over Lγ . So we have a branch through T in L. a

§5. Higher levels. For a transitive set U , let ∆1(U)-DET and Σ1(U)-DET
denote, respectively, clopen and open determinacy for game trees T ⊆ U<ω. We
recall from [2] the principles Π1-RAP(U):

Definition 5.1. Let U be a transitive set. The Π1-Reflection to Admissibles
Principle for U (denoted Π1-RAP(U)) is the assertion that P(U) exists, together
with the following axiom scheme, for all Π1 formulae φ(u) in the language of set
theory: Suppose Q ⊆ P(U) is a set and φ(Q) holds. Then there is an admissible
set M so that

• U ∈M .
• Q̄ = Q ∩M ∈M .
• M |= φ(Q̄).

For n ∈ ω, let θn be the least ordinal so that Lθn is a model of “Pn(ω)
exists” plus Π1-RAP(Pn(ω)); note θ = θ0, and by the definition of Π1-RAP(U),
Lθn |= “Pn+1(ω) exists” + “ωn+1 is the largest cardinal”. Furthermore, Lθn Σ1-
projects to ω with parameter {ωn+1}, and we have the following characterisation
of the ordinals θn in terms of trees:

Proposition 5.2. Say T is a tree on Pn+1(ω),Pn(ω) if whenever s ∈ T , we
have s2n ∈ Pn+1(ω) and s2n+1 ∈ Pn(ω). Consider a closed game on such a tree,
that is, a game where players cooperate to choose a branch through the tree, and
player I wins precisely the infinite plays. Then θn is the least ordinal so that Lθ
satisfies “for every tree T on Pn+1(ω),Pn(ω), either I wins the closed game on
T , or the game is ranked for player II”.

Note that a winning strategy for I in such a game is (coded by) an element
of Pn+1(ω); a ranking function for II (the open player) is a partial function
ρ : T ⇀ ON so that ρ(∅) exists, and whenever s ∈ T has even length and ρ(s) is
defined, we have (∀x)(∃y)s_〈x〉 ∈ T → ρ(s_〈x, y〉) < ρ(s).

We obtain a generalization of Schweber’s separation result to higher types by
looking at the models Lθn :
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Theorem 5.3. For n ∈ ω, Lθn is a model of ∆1(Pn+1(ω)) -DET, but not of
Σ1(Pn+1(ω)) -DET.

Proof. The proof of ∆1(Pn+1(ω)) -DET is exactly like that of ∆R
1 -DET in

Theorem 2.1: given a parameter set Q coding a wellfounded tree T on Pn+1(ω), if
neither player wins the game on T , reflect this Π1 statement to an admissible set
M containing Pn(ω). Use the fact that T ∩M ∈M is wellfounded to contradict
admissibility.

To see that Σ1(Pn+1(ω)) -DET fails, again define a game where the open player
proposes a Σ1 formula φ(ωn+1), and the closed player chooses a truth value and
plays approximations to the model Lθα (now using the characterization of Propo-
sition 5.2, closing under the operation sending a game tree on Pn+1(ω),Pn(ω)
to a winning strategy for I or ranking function for II, whichever exists), while
player II lists elements of Pn+1(ω) that must be included in the model. As before
II has no winning strategy in V , so none in Lθn , and any winning strategy for I
computes the Σ1({ωn+1}) theory of Lθn , so cannot belong to Lθn . a
Note that we haven’t attempted to give these results in the context of some
standard base theory of n-th order arithmetic, but the models Lθn , being models
of BST, should clearly be models of any reasonable such base theory.

§6. Conclusions. We have shown that ΣR
1 -DET, Σ0

4-DET, and ∆R
1 -DET

are strictly decreasing in consistency strength when we require the models under
consideration to satisfy some mild absoluteness. For by the results of the last
section, any β-model of ΣR

1 -DET contains a copy of Lθ, and the argument of
Theorem 2.1 then applies; it follows that any β-model of ΣR

1 -DET must contain
the Σ1-theory of Lθ, from which winning strategies in Σ0

4 games are computable.
So a β-model of ΣR

1 -DET always satisfies Σ0
4-DET, in fact, (boldface) Σ0

4-DET.
Now, we have (working in Π1

1-CA0) that Σ0
4-DET is equivalent to the existence

of a β-model of ∆R
1 -DET, so Σ0

4-DET is (consistency strength-wise) strictly
stronger than ∆R

1 -DET. But it is unclear whether ΣR
1 -DET outright implies the

existence of a β-model of ∆R
1 -DET, that is, whether Σ0

4-DET is provable from
the third order theory ΣR

1 -DET.
Indeed, Schweber asks (Question 5.1 of [7]) whether ΣR

1 -DET and ∆R
1 -DET

have the same second order consequences, and Σ0
4-DET would be an interesting

counterexample. However, the present study doesn’t rule out the possibility that
there are (necessarily non-β-) models of ΣR

1 -DET in which Σ0
4-DET fails. One

can show that there is no model of ΣR
1 -DET whose reals are precisely those of

Lθ, and so any such (set) model will be illfounded with wellfounded part well
below θ. The problem of constructing such a model (if one exists) then seems a
difficult one.
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