Discrete metric spaces: structure and enumeration

Caroline Terry

UIC

Lake Michigan Combinatorics Workshop
Forb$_n$(H): a history

Notation: Given $n \in \mathbb{N}$, $[n] = \{1, \ldots, n\}$. K_n = the complete graph on n vertices.

Definition

Fix a finite graph H and integer n. Define Forb$_n$(H) to be the set of graphs G with the following properties:
- $V(G) = [n]$ and
- G omits H as a (non-induced) subgraph.

Definition

Given $l \geq 2$, Col$_n$(l) is the set of l-colorable graphs with vertex set $[n]$.

Recall for all $l \geq 2$ and n, Col$_n$(l) \subseteq Forb$_n$(K$_{l+1}$).
Case $H = K_3$:

Theorem (Erdős, Kleitman, Rothschild, 1976)

1. **Structure:**
 \[
 \lim_{n \to \infty} \frac{|Col_n(2)|}{|Forb_n(K_3)|} = 1.
 \]

2. **Enumeration:**
 \[
 |Forb_n(K_3)| = \left(1 + o\left(\frac{1}{n}\right)\right)|Col_2(n)| = 2^{\frac{1}{2}} \frac{n^2}{2} + o(n^2).
 \]
Forb\textsubscript{n}(H): a history

There are many extensions and generalizations of this to other families of the form Forb\textsubscript{n}(H):

Theorem (Kolaitis, Pr"omel, Rothschild, 1987)

Fix $H = K_{l+1}$ for $l \geq 2$.

1. **Structure:**
 \[\lim_{n \to \infty} \frac{|Col_n(l)|}{|Forb_n(K_{l+1})|} = 1. \]

2. **Enumeration:** for any $p \geq 1$,
 \[|Forb_n(K_{l+1})| = \left(1 + o\left(\frac{1}{np}\right)\right)|Col_n(l)| = 2^{(1-\frac{1}{l})}\frac{n^2}{2} + o(1). \]
Theorem (Prömel, Steger, 1992)

Suppose \(l \geq 2 \). Suppose \(H \) has \(\chi(H) = l + 1 \) and contains a color-critical edge.

1. **Structure:**

\[
\lim_{n \to \infty} \frac{|Col_n(l)|}{|Forb_n(H)|} = 1.
\]

2. **Enumeration:** for any \(p \geq 1 \),

\[
|Forb_n(H)| = \left(1 + o\left(\frac{1}{n^p} \right) \right)|Col_n(l)| = 2^{\left(1 - \frac{1}{l} \right) \frac{n^2}{2} + o(1)}.
\]
Fix an integer \(r \geq 2 \). \(M_r(n) \) is the set of metric spaces with underlying set \([n]\) and distances all in \([r]\).

Given a set \(X \), \(\binom{X}{2} = \{ Y \subseteq X : |Y| = 2 \} \).

Fix an integer \(r \geq 2 \). A simple complete \(r \)-graph is a pair \((V, c)\) where \(V \) is a set of vertices and \(c : \binom{V}{2} \rightarrow [r] \) is a function. \(c \) is called a coloring.

Elements \(G \in M_r(n) \) are naturally simple complete \(r \)-graphs: just color edges \(xy \) with the distance \(d(x, y) \).
A violating triangle is an r-graph $H = (V, c)$ with $V = \{x, y, z\}$ such that for some $i, j, k \in [r]$, with $i > j + k$,

$$c(x, y) = i, \ c(x, z) = j, \text{ and } c(y, z) = k.$$

Given two r-graphs G and H, G omits H, if for all injections $f : V(H) \rightarrow V(G)$, there is $xy \in \binom{V(H)}{2}$ such that $c^H(x, y) \neq c^G(f(x), f(y))$.

Observation:
$M_r(n)$ is the set of all simple and complete r-graphs G such that

- $V(G) = [n]$,
- G omits all violating triangles.
Questions

1. Given a fixed r, what is the asymptotic structure of elements of $M_r(n)$?
2. $|M_r(n)| = ???$
Metric sets

Definition

$A \subseteq [r]$ is a *metric set* if for all $a, b, c \in A$, $a \leq b + c$.

Notation: Given $s < r \in \mathbb{N}$, $[s, r] = \{s, s + 1, \ldots, r\}$.

Lemma (Mubayi, T.)

- When $r \geq 2$ is even, $[\frac{r}{2}, r]$ is a unique largest metric subset of $[r]$.
- When $r \geq 3$ is odd, $[\frac{r-1}{2}, r - 1], [\frac{r+1}{2}, r]$ are the two largest metric subsets of $[r]$.

Example

- If $r = 4$, $\{2, 3, 4\}$ is the unique largest metric subset of $[r]$.
- If $r = 5$, $\{2, 3, 4\}$ and $\{3, 4, 5\}$ are the two largest metric subsets of $[r]$.

When r is odd, let $U_r = [\frac{r+1}{2}, r]$ and $L_r = [\frac{r-1}{2}, r - 1]$.
We now define a special subfamily \(C_r(n) \subseteq M_r(n) \).
Idea: \(C_r(n) \) contains only distances in the “top half” of \([r]\).

Definition

When \(r \) is even, \(C_r(n) = \{ G \in M_r(n) : \text{for all} \ a, b \in G, \ d(a, b) \in [\frac{r}{2}, r] \} \).

Example

When \(r \) is 4, this is the set of metric spaces on \([n]\) with all distances in \{2, 3, 4\}.

Definition

When \(r \) is odd, \(C_r(n) \) is the set of all \(G \in M_r(n) \) with the following property. There is a partition \(P_1, \ldots, P_l \) of \([n]\) such that

- For all \(i \) and \(ab \in \left(\begin{array}{c} P_i \\ 2 \end{array} \right) \), \(d(a, b) \in L_r \).
- For all \(i \neq j \), \((a, b) \in P_i \times P_j, \ d(a, b) \in U_r \).
For example, when $r = 5$, an element of $C_r(n)$ could look like:
Counting $C_r(n)$

Observation:
When r is even $|[\lfloor \frac{r}{2} \rfloor, r]| = \lceil \frac{r+1}{2} \rceil$.
When r is odd, $|L_r| = |U_r| = \lceil \frac{r+1}{2} \rceil$.

When $r \geq 2$ is even,

$$|C_r(n)| = \lceil \frac{r}{2}, r \rceil \binom{n}{2} = \lceil \frac{r+1}{2} \rceil \binom{n}{2}.$$

When $r \geq 3$ is odd,

$$\left\lfloor \frac{r+1}{2} \right\rfloor \binom{n}{2} \leq |C_r(n)| \leq n^n \left\lfloor \frac{r+1}{2} \right\rfloor \binom{n}{2} = \left\lfloor \frac{r+1}{2} \right\rfloor \binom{n}{2} + o(n^2).$$
Questions

1. Given a fixed r, what is the asymptotic structure of elements of $M_r(n)$?
2. $|M_r(n)| = ???$
Approximate structure

Definition

Given $\delta > 0$ and two elements $G, G' \in M_r(n)$, we say G and G' are δ-close if

$$\left| \left\{ ab \in \begin{pmatrix} [n] \end{pmatrix}_2 : d^G(a, b) \neq d^{G'}(a, b) \right\} \right| \leq \delta n^2.$$

Theorem (Mubayi, T.)

For all $r \geq 2$ and $\delta > 0$,

$$\lim_{n \to \infty} \left| \left\{ G \in M_r(n) : G \text{ is } \delta\text{-close to an element of } C_r(n) \right\} \right| \frac{1}{|M_r(n)|} = 1.$$

Proof uses multi-color version of Szemeredi’s regularity lemma and a stability theorem.
Corollary (Mubayi, T.)

For all $r \geq 2$,

$$|M_r(n)| = \left\lceil \frac{r+1}{2} \right\rceil \binom{n}{2} + o(n^2).$$
The even case

Theorem (Mubayi, T.)

When r is even,

$$
\lim_{n \to \infty} \frac{|C_r(n)|}{|M_r(n)|} = 1.
$$

Corollary (Mubayi, T.)

When $r \geq 2$ is even

$$
|M_r(n)| = (1 + o(1))|C_r(n)| = \left\lceil \frac{r + 1}{2} \right\rceil \binom{n}{2} + o(1).
$$
The odd case

Theorem (Mubayi, T.)

When $r \geq 3$ *is odd,*

$$\lim_{n \to \infty} \frac{|C_r(n)|}{|M_r(n)|} < 1.$$

Moreover,

$$|M_r(n)| \geq \left\lceil \frac{r + 1}{2} \right\rceil \binom{n}{2}^{\Omega(n \log n)}.$$
Open questions

When r is odd:
- What is the fine structure of $M_r(n)$?
- $|M_r(n)| = \left\lfloor \frac{r+1}{2} \right\rfloor \binom{n}{2} + \text{??}$.
- What is different about the even and odd cases?
Thank you for listening!