MCS 401 - Computer Algorithms I
 Fall 2023
 Problem Set 3

Lev Reyzin

Due: $10 / 13 / 23$ by the beginning of class

1. [10 pts] Consider the problem of taking positive integers x and n and computing x^{n} using as few multiplications as possible. Here, we are not concerned with the cost of performing the multiplications, but only with how many multiplications are done. Naively, $O(n)$ suffice by starting with 1 and multiplying x with the result n times. But observe that

$$
x^{n}=\left\{\begin{array}{ll}
\left(x^{n / 2}\right)\left(x^{n / 2}\right), & \text { for } n \text { even } \\
\left(x^{(n-1) / 2}\right)\left(x^{(n-1) / 2}\right) x, & \text { for } n \text { odd }
\end{array}\right\} .
$$

Use this observation to come up with a divide and conquer approach to computing x^{n} that uses asymptotically fewer multiplications than linear in n.
2. [10 pts] Consider multiplying two n by n matrices A and B to get an n by n matrix $C=A B$. Each entry of C for $1 \leq i, j \leq n$ is defined as $c_{i, j}=\sum_{k=1}^{n} a_{i, k} b_{k, j}$.
a. What is the running time, as a function of n, to compute matrix $C=A B$ when A and B are given as input using the formula above? Justify your answer.

A different approach uses divide and conquer to split all these matrices into four equally sized $n / 2$ by $n / 2$ contiguous blocks (known as "block matrices") as follows:

$$
A=\left[\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right], \quad B=\left[\begin{array}{ll}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{array}\right], \quad C=\left[\begin{array}{ll}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2}
\end{array}\right],
$$

and recursively computes the blocks of C as

$$
\left[\begin{array}{ll}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2}
\end{array}\right]=\left[\begin{array}{ll}
A_{1,1} B_{1,1}+A_{1,2} B_{2,1} & A_{1,1} B_{1,2}+A_{1,2} B_{2,2} \\
A_{2,1} B_{1,1}+A_{2,2} B_{2,1} & A_{2,1} B_{1,2}+A_{2,2} B_{2,2}
\end{array}\right] .
$$

b. Give the recurrence resulting from this approach and solve the recurrence explicitly $\mathbb{1}$

An improvement to the approach above was given by Strassen, who observed that one can compute 7 matrices $M_{1} \ldots M_{7}$, properly defined ${ }^{2}$, using 1 matrix multiplication of two $n / 2 \times n / 2$ matrices

[^0]for each of the $M_{i} \mathrm{~s}$. It turns out that C can be computed as:
\[

\left[$$
\begin{array}{cc}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2}
\end{array}
$$\right]=\left[$$
\begin{array}{cc}
M_{1}+M_{4}-M_{5}+M_{7} & M_{3}+M_{5} \\
M_{2}+M_{4} & M_{1}-M_{2}+M_{3}+M_{6}
\end{array}
$$\right],
\]

again with the multiplications to produce $M_{1} \ldots M_{7}$ also done recursively.
c. Give the recurrence resulting from this improved approach and solve it explicitly.
3. [$\mathbf{1 0} \mathbf{~ p t s}$] You are given a one dimensional array that may contain both positive and negative integers. Give an $O(n \log n)$ algorithm to find the sum of contiguous (ie. next to one another) subarray of numbers which has the largest sum. For example, if the given array is $[-2,-5, \mathbf{6},-\mathbf{2},-\mathbf{3}, \mathbf{1}, \mathbf{5},-6]$, then the maximum subarray sum is 7 (the subarray is marked in boldface). Argue that your algorithm is correct.
4. [10 pts] You are given two arrays, A and B, each of which contains n integers. The elements in each array are guaranteed to already be in sorted order in the input, i.e.

$$
A[0] \leq A[1] \leq \ldots \leq A[n-1] \text { and also } B[0] \leq B[1] \leq \ldots \leq B[n-1]
$$

Give as fast an algorithm as you can for finding the median value of all the $2 n$ numbers in both A and B. (We define the median of $2 n$ numbers to be the average of the nth smallest and nth largest values.) Argue that your algorithm is correct and give its running time.
5. [10 pts] You are given an array X of n elements. A majority element of X is any element occurring in more than $n / 2$ positions. The only access you have to the array is to compare any two of its elements for equality; hence you cannot sort the array, nor add up its values, etc. Design an $O(n \log n)$ divide-and-conquer algorithm to find a majority element in X (or determine that no majority element exists).
6. [$\mathbf{1 0} \mathbf{~ p t s}$] You are given a $2^{k} \times 2^{k}$ board with one missing cell. (See Figure 1 below.)

Figure 1: On the left is an example grid with a missing cell, with $k=3$. In the middle is the "L-shaped" tile, to be used for tiling. On the right is an example solution.
Give an $O\left(2^{2 k}\right)$-time algorithm for filling the board with " L-shaped" tiles.

[^0]: ${ }^{1}$ Adding/subtracting two n by n matrices trivially takes $O\left(n^{2}\right)$ time. ($C=A+B$ has $c_{i, j}=a_{i, j}+b_{i, j}$.)
 ${ }^{2}$ This is done as: $M_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right), M_{2}=\left(A_{21}+A_{22}\right) B_{11}, M_{3}=A_{11}\left(B_{12}-B_{22}\right), M_{4}=A_{22}\left(B_{21}-B_{11}\right)$, $M_{5}=\left(A_{11}+A_{12}\right) B_{22}, M_{6}=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right), M_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right)$, but worrying about these details is not important for solving this problem.

