MCS 549 - Mathematical Foundations of Data Science Fall 2023
 Problem Set 1

Lev Reyzin

Due: $10 / 6 / 23$ at the beginning of class

Instructions: Atop your problem set, please write your name and list your collaborators.

Problems

Prove all your answers.

1. For what value of d is the volume of the d-dimensional unit ball maximized?
2.* Suppose we are given n unit vectors in R^{n} divided into two sets P, Q with the guarantee that there exists a hyperplane $a \cdot x=0$ such that every point in P is on one side of it and every point in Q is on the other. Furthermore, assume that the ℓ_{2} distance of each point to the hyperplane is at least γ (this is sometimes called the "margin"). Show that a random projection (as defined in the book) to some $c \log n / \gamma^{2}$ dimensions will have the property that with high probability, the two sets of points will still remain separated by a hyperplane with margin $\gamma / 2$.
2. Show that if A is a symmetric matrix with distinct singular values, then the left and right singular vectors are the same and $A=V D V^{T}$.
3. A Markov chain is said to be symmetric if for all i and $j, p_{i j}=p_{j i}$. What is the stationary distribution of a connected symmetric Markov chain? Prove your answer.
4. What is the hitting time $h_{u v}$ for two adjacent vertices on a cycle of length n ? What is the hitting time if edge (u, v) is removed?
5. What is the escape probability of a random walk starting at the root of an infinite binary tree? Show how you arrived at your answer.
[^0]
[^0]: *This problem is extra challenging.

