MCS 549 - Foundations of Data Science
 Fall 2023
 Problem Set 2

Lev Reyzin

Due: $11 / 3 / 23$ at the beginning of class

Instructions: Atop your problem set, please write your name and list your collaborators.

Problems

1. Find the threshold for $p(n)$ for the existence of 4 -cliques in $G(n, p(n))$. Prove your answer correct.
2. The example at the end of Section 8.1 .1 in the book computes that if the degrees in $G\left(n, \frac{1}{n}\right)$ were independent, there would be a vertex of degree

$$
d=\Omega\left(\frac{\log n}{\log \log n}\right)
$$

with constant positive probability. However, the degrees are not independent. Show how to overcome this difficulty and reach the same conclusion.
3. Show that in $G(n, 1 / 2)$ there are almost surely are no cliques of size greater than or equal to $2 \log _{2} n$. Then, use the second moment method to show that in $G(n, 1 / 2)$, almost surely there are cliques of size $(2-\varepsilon) \log _{2} n$ (for any constant $\varepsilon>0$).
4. What is the expected number of simple paths of length $3, \log n, \sqrt{n}$, and $n-1$ in $G\left(n, \frac{d}{n}\right)$?

