MCS 541 - Computational Complexity
 Spring 2023
 Problem Set 5*

Lev Reyzin

Due: $4 / 17 / 23$ at the beginning of class

1. Find a decidable language in $\mathbf{P}_{\text {/poly }} \backslash \mathbf{P}$. (Recall that UHALT is an undecidable language in $\mathbf{P}_{/ \text {poly }} \backslash \mathbf{P}$.)
2. In class we saw that a PTM using unbiased coins can efficiently simulate a PTM using coins of bias ρ. This proof, however, needed us to (efficiently) compute ρ. Prove that if the coin's bias ρ is allowed to be arbitrary, then a PTM using coins of bias ρ can decide (with, say, two-sided error) some undecidable language in polynomial time.
3. It is trivial to prove that every function f from $\{0,1\}^{n}$ to $\{0,1\}$ can be computed by a Boolean circuit of size $O\left(n 2^{n}\right)$. Improve this bound to $O\left(2^{n}\right)$.
4. Define EPP to be the class of languages decided by probabilistic Turing machines that give the correct accept/reject answer on any input x with probability $>1 / 2$ (similar to the relaxed requirement of $\mathbf{B P P}$ compared to the stringent requirement for $\mathbf{Z P P}$), but whose expected running time is polynomial (similar to the relaxed requirement for $\mathbf{Z P P}$ compared to the stringent requirement for BPP). Show that EXP $\subseteq \mathbf{E P P}$.
[^0]
[^0]: *Many of these problems are modifications of exercises that appear in Arora-Barak.

