MCS 541 - Computational Complexity
 Spring 2023
 Problem Set 6 *

Lev Reyzin

Due: $4 / 28 / 23$ at the beginning of class

1. Prove that if one-way functions exist, then $\mathbf{P} \neq \mathbf{N P}$.
2. Prove that a one-time pad (strongly) satisfies computational security, i.e. that for every function A, if (E, D) denotes the one-time pad encryption then

$$
\operatorname{Pr}_{k \epsilon_{R}\{0,1\}^{n}, x \in_{R}\{0,1\}^{n}}\left[A\left(\mathrm{E}_{k}(x)\right)=(i, b) \text { s.t. } x_{i}=b\right] \leq 1 / 2 \text {. }
$$

3. Prove that any language that has a PCP verifier using r coins and q adaptive queries also has a nonadaptive verifier using r coins and 2^{q} queries.
4. Prove that $\mathbf{P C P}(0, \operatorname{poly}(n))=\mathbf{N P}$.
[^0]
[^0]: ${ }^{*}$ Many of these problems are modifications of exercises that appear in Arora-Barak.

