CS 501 / MCS 501 - Computer Algorithms I

Spring 2024
Problem Set 4
Lev Reyzin
Due: $4 / 5 / 24$ by the beginning of class

Instructions: Atop your answer sheet, write your name and the names of all the students with whom you have collaborated on this problem set. All answers require explanation or proof.

1. [20 $\mathbf{p t s}$] For $k>2$, denote by C_{k} the cycle on k vertices.
a. [$5 \mathbf{p t s}$] What is the value of the MAX-CUT in C_{k} for every $k>2$?
b. [10 pts] Show that the value of the SDP for MAX-CUT is at least $k(1-\cos (\pi(1-1 / k))) / 2$.
c. [5 pts] What is the largest integrality gap for graphs C_{k} that you can find?
2. [25 pts] In class, we saw that an LP approach gives a $3 / 4$ approximation to MAX-2-SAT. In this problem, we will improve on this guarantee using semidefinite programming. For a formula $\phi\left(x_{1}, \ldots x_{n}\right)$ in 2-CNF, we create constraints $y_{i} \in\{-1,1\}$, where y_{i} represents every variable x_{i} (and $-y_{i}$ for \bar{x}_{i}). We also create a variable y_{0} to represent whether -1 or 1 stands for true. For clauses in the form $\left(x_{i} \vee x_{j}\right)$, we can maximize $\frac{3+y_{i} y_{0}+y_{j} y_{0}-y_{i} y_{j}}{4}$, which will evaluate to 1 if the clause is satisfied (analogous expressions exist for clauses with negations). Summing this over all clauses would solve the problem, but the constraints $y_{i} \in\{-1,1\}$ preclude this from being an SDP.
a. [$\mathbf{5} \mathbf{~ p t s}$] Formulate the above as an optimization problem and give an explicit SDP relaxation.
b. [10 pts] Use the above to give a randomized .878 approximation algorithm for MAX-2-SAT.
c. [10 pts] Using the result in part b. (even if you were unable to prove it), improve upon the $3 / 4$ approximation algorithm for MAX-SAT that we obtained from LP-based methods. (Hint: try combining the result in b. with the "better of two" $3 / 4$ approximation algorithm.)
3. [20 pts] Give polynomial time algorithms for the following problems. Note, these are not questions about semidefinite programming, but rather about problems whose variants are NP hard and have SDP-based approximation algorithms.
a. [10 pts] Deciding whether all clauses in a MAX-2-SAT instance are simultaneously satisfiable ${ }^{1}$ (Hint: recall that $\left(x_{i} \vee x_{j}\right)$ is equivalent $\left(-x_{i} \rightarrow x_{j}\right) \wedge\left(-x_{j} \rightarrow x_{i}\right)$.)
b. [5 pts] 2-coloring a 2-colorable graph.
c. [5 pts] Coloring a graph with maximum degree Δ using $\Delta+1$ colors.
[^0]
[^0]: ${ }^{1}$ While the MAX-2-SAT problem is NP-hard, this variant of it is in P .

